scholarly journals Galactose Inhibition of Auxin-Induced Growth of Mono- and Dicotyledonous Plants

1988 ◽  
Vol 86 (4) ◽  
pp. 1223-1227 ◽  
Author(s):  
Ryoichi Yamamoto ◽  
Masahiro Inouhe ◽  
Yoshio Masuda
2021 ◽  
Author(s):  
Jia Deng ◽  
Xiangfeng Wang ◽  
Ziqiang Liu ◽  
Tonglin Mao

AbstractThe unique apical hook in dicotyledonous plants protects the shoot apical meristem and cotyledons when seedlings emerge through the soil. Its formation involves differential cell growth under the coordinated control of plant hormones, especially ethylene and auxin. Microtubules are essential players in plant cell growth that are regulated by multiple microtubule-associated proteins (MAPs). However, the role and underlying mechanisms of MAP-microtubule modules in differential cell growth are poorly understood. In this study, we found that the previously uncharacterized Arabidopsis MAP WAVE-DAMPENED2-LIKE4 (WDL4) protein plays a positive role in apical hook opening. WDL4 exhibits a temporal expression pattern during hook development in dark-grown seedlings that is directly regulated by ethylene signaling. WDL4 mutants showed a delayed hook opening phenotype while overexpression of WDL4 resulted in enhanced hook opening. In particular, wdl4-1 mutants exhibited stronger auxin accumulation in the concave side of the apical hook. Furthermore, the regulation of the auxin maxima and trafficking of the auxin efflux carriers PIN-FORMED1 (PIN1) and PIN7 in the hook region is critical for WDL4-mediated hook opening. Together, our study demonstrates that WDL4 positively regulates apical hook opening by modulating auxin distribution, thus unraveling a mechanism for MAP-mediated differential plant cell growth.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 527
Author(s):  
Katarzyna Czyzewska ◽  
Anna Trusek

The current requirements of industrial biocatalysis are related to economically beneficial and environmentally friendly processes. Such a strategy engages low-temperature reactions. The presented approach is essential, especially in food processes, where temperature affects the quality and nutritional value foodstuffs. The subject of the study is the hydrolysis of lactose with the commercial lactase NOLA™ Fit 5500 (NOLA). The complete decomposition of lactose into two monosaccharides gives a sweeter product, recommended for lactose intolerant people and those controlling a product’s caloric content. The hydrolysis reaction was performed at 15 °C, which is related to milk transportation and storage temperature. The enzyme showed activity over the entire range of substrate concentrations (up to 55 g/L lactose). For reusability and easy isolation, the enzyme was encapsulated in a sodium alginate network. Its stability allows carrying out six cycles of the complete hydrolysis of lactose to monosaccharides, lasting from two to four hours. During the study, the kinetic description of native and encapsulated NOLA was conducted. As a result, the model of competitive galactose inhibition and glucose mixed influence (competitive inhibition and activation) was proposed. The capsule size does not influence the reaction rate; thus, the substrate diffusion into capsules can be omitted from the process description. The prepared 4 mm capsules are easy to separate between cycles, e.g., using sieves.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 26
Author(s):  
Ghulam Mustafa ◽  
Muhammad Sarwar Khan

We report here plastid transformation in sugarcane using biolistic transformation and embryogenesis-based regeneration approaches. Somatic embryos were developed from unfurled leaf sections, containing preprogrammed progenitor cells, to recover transformation events on antibiotic-containing regeneration medium. After developing a proficient regeneration system, the FLARE-S (fluorescent antibiotic resistance enzyme, spectinomycin and streptomycin) expression cassette that carries species-specific homologous sequence tails was used to transform plastids and track gene transmission and expression in sugarcane. Plants regenerated from streptomycin-resistant and genetically confirmed shoots were subjected to visual detection of the fluorescent enzyme using a fluorescent stereomicroscope, after genetic confirmation. The resultant heteroplasmic shoots remained to segregate on streptomycin-containing MS medium, referring to the unique pattern of division and sorting of cells in C4 monocotyledonous compared to C3 monocotyledonous and dicotyledonous plants since in sugarcane bundle sheath and mesophyll cells are distinct and sort independently after division. Hence, the transformation of either mesophyll or bundle sheath cells will develop heteroplasmic transgenic plants, suggesting the transformation of both types of cells. Whilst developed transgenic sugarcane plants are heteroplasmic, and selection-based regeneration protocol envisaging the role of division and sorting of cells in the purification of transplastomic demands further improvement, the study has established many parameters that may open up exciting possibilities to express genes of agricultural or pharmaceutical importance in sugarcane.


1946 ◽  
Vol 133 (873) ◽  
pp. 480-485 ◽  

The preparation and biological examination of a number of arylcarbamic esters (arylurethanes) are described. The experiments demonstrate the marked effect of iso propyl phenylcarbamate and some related compounds in very low concentrations upon the germination and seedling growth of cereals. The absence of effect of the same compounds in similar concentrations upon some dicotyledonous plants is noted.


2016 ◽  
Vol 50 (5) ◽  
pp. 267-277 ◽  
Author(s):  
E. A. Kravets ◽  
Yu. V. Sidorchuk ◽  
I. I. Horyunova ◽  
S. H. Plohovskaya ◽  
S. R. Mursalimov ◽  
...  

Plant Disease ◽  
2009 ◽  
Vol 93 (5) ◽  
pp. 548-548 ◽  
Author(s):  
L. Cardin ◽  
L. Vincenot ◽  
M. H. Balesdent

Bergenia crassifolia (L.) Fritsch (elephant's ears or Siberian tea) (Saxifragaceae) is a perennial rhizomatous plant with pink flowers appearing at the end of winter. Since 1990, large, brown, and necrotic spots have been observed on numerous B. crassifolia plants at the University of Sciences in Nice, France. Spots appeared each year in the spring on newly emerged leaves and enlarged up to 1 to 3 cm in diameter during the summer, sometimes affecting more than half of the leaf surface. Leaves with spots were collected from May to November and placed in a humid atmosphere. Black, sessile, discoid conidiomata developed on the spots and exuded a pink, then brown, spore mass. When a mass was transferred onto a 1% malt agar medium, mycelium grew and then numerous, relatively spherical conidiomata (0.5 to 2.5 mm in diameter) developed and exuded a pink slimy mass, which contained many conidia. The mycelium grown at 24°C in the dark was scarce and pale, pink-beige. Under the light, the fungal culture was much darker with a fluffy mycelium and numerous conidiomata. The base of the conidiomata was dark; conidiophores were hyaline and showed little segmentation. Unicellular, cylindrical, fusiform conidia were hyaline, 5.4 to 8 μm long, and 1.4 to 1.9 μm wide. The morphology and size of conidia were comparable with previous descriptions of Pilidium concavum (Desm.) Höhn. (2,3). The ITS1-5.8S-ITS2 region of two isolates was amplified by PCR with primers PN3 and PN10 according to Mendes-Pereira et al. (1) and sequenced. The 421-nt sequence (GenBank Accession No. FM211810) was 100% identical to that of the P. concavum specimen voucher BPI 1107275 (GenBank Accession No. AY487094). P. concavum was reported to be on stored or rotting leaves or fruits of many dicotyledonous plants (2). To validate Koch's postulates, pieces of mycelium cultures with conidiomata (28 days old) were placed onto the upper surface of leaves of healthy B. crassifolia plants (10 to 12 pieces per plant). The leaf epidermis was previously wounded with a needle and a drop of melted paraffin was poured onto each piece of mycelium to prevent desiccation. Agar plugs without the fungus were placed similarly on wounded leaves of two control plants. Four inoculated and two control plants were incubated in growth chambers at either 24 or 18°C (16 h of light per day, 15,000 lx, 80% humidity). At 24°C, brown spots developed from 90% of the inoculation sites, whereas spots were observed for only 18% of the sites at 18°C. Such spots did not develop on control plants. After 2 months, healthy leaves as well as those with necrotic spots were put in humid chambers. Conidiomata formed after 4 weeks and exuded the same pink mass, which contained numerous conidia and from which the fungus was reisolated. Similar symptoms were also observed in several other locations in France and in botanical gardens in Akureyri (Iceland) and Métis (Canada), from which P. concavum was reisolated. To our knowledge, this is the first report of P. concavum on B. crassifolia. References: (1) E. Mendes-Pereira et al. Mycol. Res. 107:1287, 2003. (2) M. E. Palm. Mycologia 83:787, 1991. (3) A. Y. Rossman et al. Mycol. Prog. 3:275, 2004.


Sign in / Sign up

Export Citation Format

Share Document