scholarly journals MADS Domain Transcription Factors Mediate Short-Range DNA Looping That Is Essential for Target Gene Expression in Arabidopsis

2013 ◽  
Vol 25 (7) ◽  
pp. 2560-2572 ◽  
Author(s):  
M. A. Mendes ◽  
R. F. Guerra ◽  
M. C. Berns ◽  
C. Manzo ◽  
S. Masiero ◽  
...  
Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1228-1228
Author(s):  
Yanan Li ◽  
Riddhi M Patel ◽  
Emily Casey ◽  
Jeffrey A. Magee

The FLT3 Internal Tandem Duplication (FLT3ITD) is common somatic mutation in acute myeloid leukemia (AML). We have previously shown that FLT3ITD fails to induce changes in HSC self-renewal, myelopoiesis and leukemogenesis during fetal stages of life. FLT3ITD signal transduction pathways are hyperactivated in fetal progenitors, but FLT3ITD target genes are not. This suggests that postnatal-specific transcription factors may be required to help induce FLT3ITD target gene expression. Alternatively, repressive histone modifications may impose a barrier to FLT3ITD target gene activation in fetal HPCs that is relaxed during postnatal development. To resolve these possibilities, we used ATAC-seq, as well as H3K4me1, H3K27ac and H3K27me3 ChIP-seq, to identify cis-elements that putatively control FLT3ITD target gene expression in fetal and adult hematopoietic progenitor cells (HPCs). We identified many enhancer elements (ATAC-seq peaks with H3K4me1 and H3K27ac) that exhibited increased chromatin accessibility and activity in FLT3ITD adult HPCs relative to wild type adult HPCs. These elements were enriched near FLT3ITD target genes. HOMER analysis showed enrichment for STAT5, ETS, RUNX1 and IRF binding motifs within the FLT3ITD target enhancers, but motifs for temporally dynamic transcription factors were not identified. We cloned a subset of the enhancers and confirmed that they could synergize with their promoter to activate a luciferase reporter. For representative enhancers, STAT5 binding sites were required to activate the enhancer - as anticipated - and RUNX1 repressed enhancer activity. We tested whether accessibility or priming changed between fetal and adult stages of HPC development. FLT3ITD-dependent changes in chromatin accessibility were not observed in fetal HPCs, though the enhancers were primed early in development as evidenced by the presence of H3K4me1. Repressive H3K27me3 were not present at FLT3ITD target enhancers in either or adult HPCs. The data show that FLT3ITD target enhancers are demarcated early in hematopoietic development, long before they become responsive to FLT3ITD signaling. Repressive marks do not appear to create an epigenetic barrier to enhancer activation in the fetal stage. Instead, age-specific transcription factors are likely required to pioneer enhancer elements so that they can respond to STAT5 and other FLT3ITD effectors. Disclosures No relevant conflicts of interest to declare.


2000 ◽  
Vol 28 (4) ◽  
pp. 369-373 ◽  
Author(s):  
I. J. McEwan

The intracellular receptors for steroid hormones, thyroid hormones, retinoids and vitamin D3 are known to bind to specific DNA elements and thus regulate target gene expression. This introductory review and the following papers address some of the mechanisms underlying this action. In particular, the ability of this family of transcription factors to recruit multi-protein complexes that have the capacity to remodel chromatin structure in order to silence or activate target gene expression is discussed.


2021 ◽  
Author(s):  
Caixia Wang ◽  
Xiaozhi Rong ◽  
Haifeng Zhang ◽  
Bo Wang ◽  
Yan Bai ◽  
...  

The Wnt/β-catenin signaling pathway plays key roles in development and adult tissue homeostasis by controlling cell proliferation and cell fate decisions. In this pathway, transcription factors TCF/LEFs are the key components to repress target gene expression by recruiting co-repressors or to activate target gene expression by recruiting β-catenin when the Wnt signals are absent or present, respectively. While progress has been made in our understanding of Wnt signaling regulation, the underlying mechanism that regulates the protein stability of the TCF/LEF family is far less clear. Here, we show that von Hippel-Lindau protein (pVHL), which is the substrate recognition component in an E3 ubiquitin ligase complex, controls TCF/LEF protein stability. Unexpectedly, pVHL directly binds to TCF/LEFs and promotes their proteasomal degradation independent of E3 ubiquitin ligase activity. Knockout of vhl in zebrafish embryos leads to a reduction of dorsal habenular neurons and this effect is upstream of dorsal habenular neurons phenotype in tcf7l2-null mutants. Our study uncovers a previously unknown mechanism for the protein stability regulation of the TCF/LEF transcription factors and demonstrates that pVHL contains a 26S proteasome binding domain that drives ubiquitin-independent proteasomal degradation. These findings provide new insights into the ubiquitin-independent actions of pVHL and uncover novel mechanistical regulation of Wnt/β-catenin signaling.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 2049-P
Author(s):  
REBECCA K. DAVIDSON ◽  
NOLAN CASEY ◽  
JASON SPAETH

2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Ian Edward Gentle ◽  
Isabel Moelter ◽  
Mohamed Tarek Badr ◽  
Konstanze Döhner ◽  
Michael Lübbert ◽  
...  

AbstractMutations in the transcription factor C/EBPα are found in ~10% of all acute myeloid leukaemia (AML) cases but the contribution of these mutations to leukemogenesis is incompletely understood. We here use a mouse model of granulocyte progenitors expressing conditionally active HoxB8 to assess the cell biological and molecular activity of C/EBPα-mutations associated with human AML. Both N-terminal truncation and C-terminal AML-associated mutations of C/EBPα substantially altered differentiation of progenitors into mature neutrophils in cell culture. Closer analysis of the C/EBPα-K313-duplication showed expansion and prolonged survival of mutant C/EBPα-expressing granulocytes following adoptive transfer into mice. C/EBPα-protein containing the K313-mutation further showed strongly enhanced transcriptional activity compared with the wild-type protein at certain promoters. Analysis of differentially regulated genes in cells overexpressing C/EBPα-K313 indicates a strong correlation with genes regulated by C/EBPα. Analysis of transcription factor enrichment in the differentially regulated genes indicated a strong reliance of SPI1/PU.1, suggesting that despite reduced DNA binding, C/EBPα-K313 is active in regulating target gene expression and acts largely through a network of other transcription factors. Strikingly, the K313 mutation caused strongly elevated expression of C/EBPα-protein, which could also be seen in primary K313 mutated AML blasts, explaining the enhanced C/EBPα activity in K313-expressing cells.


Author(s):  
Philipp Moritz Fricke ◽  
Angelika Klemm ◽  
Michael Bott ◽  
Tino Polen

Abstract Acetic acid bacteria (AAB) are valuable biocatalysts for which there is growing interest in understanding their basics including physiology and biochemistry. This is accompanied by growing demands for metabolic engineering of AAB to take advantage of their properties and to improve their biomanufacturing efficiencies. Controlled expression of target genes is key to fundamental and applied microbiological research. In order to get an overview of expression systems and their applications in AAB, we carried out a comprehensive literature search using the Web of Science Core Collection database. The Acetobacteraceae family currently comprises 49 genera. We found overall 6097 publications related to one or more AAB genera since 1973, when the first successful recombinant DNA experiments in Escherichia coli have been published. The use of plasmids in AAB began in 1985 and till today was reported for only nine out of the 49 AAB genera currently described. We found at least five major expression plasmid lineages and a multitude of further expression plasmids, almost all enabling only constitutive target gene expression. Only recently, two regulatable expression systems became available for AAB, an N-acyl homoserine lactone (AHL)-inducible system for Komagataeibacter rhaeticus and an l-arabinose-inducible system for Gluconobacter oxydans. Thus, after 35 years of constitutive target gene expression in AAB, we now have the first regulatable expression systems for AAB in hand and further regulatable expression systems for AAB can be expected. Key points • Literature search revealed developments and usage of expression systems in AAB. • Only recently 2 regulatable plasmid systems became available for only 2 AAB genera. • Further regulatable expression systems for AAB are in sight.


2002 ◽  
Vol 88 (2) ◽  
pp. 363-371 ◽  
Author(s):  
Aruna V. Krishnan ◽  
Donna M. Peehl ◽  
David Feldman

2014 ◽  
Vol 10 (1) ◽  
pp. 109-114 ◽  
Author(s):  
Garrett S. Gibbons ◽  
Scott R. Owens ◽  
Eric R. Fearon ◽  
Zaneta Nikolovska-Coleska

Sign in / Sign up

Export Citation Format

Share Document