Preliminary X-ray diffraction studies of the tetragonal form of native horse-spleen apoferritin

1996 ◽  
Vol 52 (3) ◽  
pp. 594-596 ◽  
Author(s):  
T. Granier ◽  
B. Gallois ◽  
A. Dautant ◽  
B. Langois d'Estaintot ◽  
G. Précigoux
1999 ◽  
Vol 14 (2) ◽  
pp. 111-113 ◽  
Author(s):  
E. M. Larson ◽  
Joe Wong ◽  
J. B. Holt ◽  
P. A. Waide ◽  
B. Rupp

The combustion synthesis of the common ferroelectric material, BaTiO3, was developed using the stoichiometry: BaO2+0.2 Ti+0.8 TiO2→BaTiO3+0.3 O2. An adiabatic temperature, Tad, of the reaction was calculated from known thermodynamic data to be 1917 °C. Real time chemical changes in the formation of BaTiO3 during the reaction have been monitored using time-resolved X-ray diffraction with synchrotron radiation as the X-ray source. A time resolution of 250 ms was achieved. The combustion synthesis of BaTiO3 was followed by observing the intensities of reactant and product Bragg diffraction peaks in order to qualitatively identify the phases present. Because BaTiO3 forms initially as a cubic phase, X-ray diffraction of the product was monitored for a period of 20 min after the reaction to observe the phase transformation to the tetragonal form. This transformation is evident in these post-reaction scans as the cubic 110 and 220 peaks are split to the tetragonal 101/110 and 202/220 ones, respectively.


2009 ◽  
Vol 3 (1) ◽  
pp. 7-18
Author(s):  
Mahendra Singh ◽  
◽  
Anuj Kumar ◽  
Naresh Kumar ◽  
Poonam Tandon ◽  
...  

Poly(-N-butyl--L-aspartate) (PANBLA) is nylon-3 derivative in which an alcoxycarbonyl group has been stereoregularly attached to -carbon of the repeating unit. Like poly(-isobutyl--L-aspartate) (PAIBLA) exists in two helical forms, namely hexagonal form (13/4 helix) and tetragonal form (4/1 helix), were characterized by X-ray diffraction. The hexagonal form appears to be poorly crystalline and it could not be obtained well oriented. On the other hand tetragonal form turns to be highly crystalline. Both molecular mechanics calculations and the linked-atom least square (LALS) methodology using X-ray diffraction data have revealed that an antiparallel packing of 13/4 helices with a right handed (2R) scheme of hydrogen bonds is most favourable for hexagonal form of PANBLA. Regarding tetragonal form the above techniques favour a parallel arrangement of 4/1 helices according to right handed 4R model. IR dichroism studies also support the above results. Although the vibrational dynamics of both forms of PAIBLA has been studied, no such study has been performed for PANBLA. In the present communication the vibrational dynamics of PANBLA in tetragonal form (4/1 helix) has been studied through the dispersion of normal modes. The effect of side chain nature on the dynamical behaviour has also been analyzed. Apart from detailed assignments of modes, various characteristic features of dispersion curves have been explained as arising due to internal symmetry in energy momentum space. Finally, the density of states has been used to calculate heat capacity of this polymer.


2011 ◽  
Vol 20 (3) ◽  
pp. 157 ◽  
Author(s):  
Florence Boulc'h ◽  
Marie-Claude Schouler ◽  
Patricia Donnadieu ◽  
Jean-Marc Chaix ◽  
Elisabeth Djurado

Yttria doped nanocrystalline zirconia powder was prepared by spray-pyrolysis technique. Powder crystallized into tetragonal form, as dense and compositionally homogeneous polycrystalline spheres. X-Ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) have been used in order to characterize the mean size and the size distribution of crystalline domains. An average size of 6 nm was calculated by Scherrer formula from X-Ray diffraction pattern. The domain size, determined by analysis method developed by Hytch from HRTEM observations, ranges from 5 to 22 nm with a main population around the value 12 nm. Limits and complementary nature of XRD and HRTEM methods are discussed.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
James A. Lake

The understanding of ribosome structure has advanced considerably in the last several years. Biochemists have characterized the constituent proteins and rRNA's of ribosomes. Complete sequences have been determined for some ribosomal proteins and specific antibodies have been prepared against all E. coli small subunit proteins. In addition, a number of naturally occuring systems of three dimensional ribosome crystals which are suitable for structural studies have been observed in eukaryotes. Although the crystals are, in general, too small for X-ray diffraction, their size is ideal for electron microscopy.


Author(s):  
C. Wolpers ◽  
R. Blaschke

Scanning microscopy was used to study the surface of human gallstones and the surface of fractures. The specimens were obtained by operation, washed with water, dried at room temperature and shadowcasted with carbon and aluminum. Most of the specimens belong to patients from a series of X-ray follow-up study, examined during the last twenty years. So it was possible to evaluate approximately the age of these gallstones and to get information on the intensity of growing and solving.Cholesterol, a group of bile pigment substances and different salts of calcium, are the main components of human gallstones. By X-ray diffraction technique, infra-red spectroscopy and by chemical analysis it was demonstrated that all three components can be found in any gallstone. In the presence of water cholesterol crystallizes in pane-like plates of the triclinic crystal system.


Author(s):  
W. W. Barker ◽  
W. E. Rigsby ◽  
V. J. Hurst ◽  
W. J. Humphreys

Experimental clay mineral-organic molecule complexes long have been known and some of them have been extensively studied by X-ray diffraction methods. The organic molecules are adsorbed onto the surfaces of the clay minerals, or intercalated between the silicate layers. Natural organo-clays also are widely recognized but generally have not been well characterized. Widely used techniques for clay mineral identification involve treatment of the sample with H2 O2 or other oxidant to destroy any associated organics. This generally simplifies and intensifies the XRD pattern of the clay residue, but helps little with the characterization of the original organoclay. Adequate techniques for the direct observation of synthetic and naturally occurring organoclays are yet to be developed.


Author(s):  
J. M. Galbraith ◽  
L. E. Murr ◽  
A. L. Stevens

Uniaxial compression tests and hydrostatic tests at pressures up to 27 kbars have been performed to determine operating slip systems in single crystal and polycrystal1ine beryllium. A recent study has been made of wave propagation in single crystal beryllium by shock loading to selectively activate various slip systems, and this has been followed by a study of wave propagation and spallation in textured, polycrystal1ine beryllium. An alteration in the X-ray diffraction pattern has been noted after shock loading, but this alteration has not yet been correlated with any structural change occurring during shock loading of polycrystal1ine beryllium.This study is being conducted in an effort to characterize the effects of shock loading on textured, polycrystal1ine beryllium. Samples were fabricated from a billet of Kawecki-Berylco hot pressed HP-10 beryllium.


Author(s):  
T. J. Beveridge

The Bacillus subtilis cell wall provides a protective sacculus about the vital constituents of the bacterium and consists of a collection of anionic hetero- and homopolymers which are mainly polysaccharidic. We recently demonstrated that unfixed walls were able to trap and retain substantial amounts of metal when suspended in aqueous metal salt solutions. These walls were briefly mixed with low concentration metal solutions (5mM for 10 min at 22°C), were well washed with deionized distilled water, and the quantity of metal uptake (atomic absorption and X-ray fluorescence), the type of staining response (electron scattering profile of thin-sections), and the crystallinity of the deposition product (X-ray diffraction of embedded specimens) determined.Since most biological material possesses little electron scattering ability electron microscopists have been forced to depend on heavy metal impregnation of the specimen before obtaining thin-section data. Our experience with these walls suggested that they may provide a suitable model system with which to study the sites of reaction for this metal deposition.


Author(s):  
William H. Massover

The molecular structure of the iron-storage protein, ferritin, is becoming known in ever finer detail. The 24 apoferritin subunits (MW ca. 20,000) have a 2:1 axial ratio and are polymerized with 4:3:2 symmetry to form an outer shell surrounding a variable amount of microcrystalline iron, Recent x-ray diffraction results indicate that the projected outline of the native molecule has a quasi-hexagonal shape when viewed down the 3-fold axes of symmetry, and a quasi-square shape when looking down the 4-fold axes. To date, no electron microscope study has reported observing anything other than circular profiles, which would indicate that ferritin is strictly spherical. The apparent conflict between the "hollow sphere" of electron microscopy (E.M.) and the "truncated rhombic dodecahedron" of x-ray diffraction could reflect the poorer effective resolution of E.M. coming from radiation damage, staining, drying, etc. The present study investigates the detailed shape of individual ferritin molecules in order to search for the predicted aspherical profiles and to interpret the nature of this apparent contradiction.


Sign in / Sign up

Export Citation Format

Share Document