scholarly journals Radiation-induced melting in coherent X-ray diffractive imaging at the nanoscale

2011 ◽  
Vol 18 (4) ◽  
pp. 580-594 ◽  
Author(s):  
O. Ponomarenko ◽  
A. Y. Nikulin ◽  
H. O. Moser ◽  
P. Yang ◽  
O. Sakata

Coherent X-ray diffraction techniques play an increasingly significant role in the imaging of nanoscale structures, ranging from metallic and semiconductor to biological objects. In material science, X-rays are usually considered to be of a low-destructive nature, but under certain conditions they can cause significant radiation damage and heat loading on the samples. The qualitative literature data concerning the tolerance of nanostructured samples to synchrotron radiation in coherent diffraction imaging experiments are scarce. In this work the experimental evidence of a complete destruction of polymer and gold nanosamples by the synchrotron beam is reported in the case of imaging at 1–10 nm spatial resolution. Numerical simulations based on a heat-transfer model demonstrate the high sensitivity of temperature distribution in samples to macroscopic experimental parameters such as the conduction properties of materials, radiation heat transfer and convection. However, for realistic experimental conditions the calculated rates of temperature rise alone cannot explain the melting transitions observed in the nanosamples. Comparison of these results with the literature data allows a specific scenario of the sample destruction in each particular case to be presented, and a strategy for damage reduction to be proposed.

Author(s):  
D. A. Carpenter ◽  
M. A. Taylor

The development of intense sources of x rays has led to renewed interest in the use of microbeams of x rays in x-ray fluorescence analysis. Sparks pointed out that the use of x rays as a probe offered the advantages of high sensitivity, low detection limits, low beam damage, and large penetration depths with minimal specimen preparation or perturbation. In addition, the option of air operation provided special advantages for examination of hydrated systems or for nondestructive microanalysis of large specimens.The disadvantages of synchrotron sources prompted the development of laboratory-based instrumentation with various schemes to maximize the beam flux while maintaining small point-to-point resolution. Nichols and Ryon developed a microprobe using a rotating anode source and a modified microdiffractometer. Cross and Wherry showed that by close-coupling the x-ray source, specimen, and detector, good intensities could be obtained for beam sizes between 30 and 100μm. More importantly, both groups combined specimen scanning with modern imaging techniques for rapid element mapping.


1998 ◽  
Vol 4 (S2) ◽  
pp. 378-379
Author(s):  
Z. W. Chen ◽  
D. B. Wittry

A monochromatic x-ray microprobe based on a laboratory source has recently been developed in our laboratory and used for fluorescence excitation. This technique provides high sensitivity (ppm to ppb), nondestructive, quantitative microanalysis with minimum sample preparation and does not require a high vacuum specimen chamber. It is expected that this technique (MMXRF) will have important applications in materials science, geological sciences and biological science.Three-dimensional focusing of x-rays can be obtained by using diffraction from doubly curved crystals. In our MMXRF setup, a small x-ray source was produced by the bombardment of a selected target with a focused electron beam and a toroidal mica diffractor with Johann pointfocusing geometry was used to focus characteristic x-rays from the source. In the previous work ∼ 108 photons/s were obtained in a Cu Kα probe of 75 μm × 43 μm in the specimen plane using the fifth order reflection of the (002) planes of mica.


2018 ◽  
Vol 620 ◽  
pp. A18 ◽  
Author(s):  
C. H. A. Logan ◽  
B. J. Maughan ◽  
M. N. Bremer ◽  
P. Giles ◽  
M. Birkinshaw ◽  
...  

Context. The XMM-XXL survey has used observations from the XMM-Newton observatory to detect clusters of galaxies over a wide range in mass and redshift. The moderate PSF (FWHM ~ 6″ on-axis) of XMM-Newton means that point sources within or projected onto a cluster may not be separated from the cluster emission, leading to enhanced luminosities and affecting the selection function of the cluster survey. Aims. We present the results of short Chandra observations of 21 galaxy clusters and cluster candidates at redshifts z > 1 detected in the XMM-XXL survey in X-rays or selected in the optical and infra-red. Methods. With the superior angular resolution of Chandra, we investigate whether there are any point sources within the cluster region that were not detected by the XMM-XXL analysis pipeline, and whether any point sources were misclassified as distant clusters. Results. Of the 14 X-ray selected clusters, 9 are free from significant point source contamination, either having no previously unresolved sources detected by Chandra or with less than about 10% of the reported XXL cluster flux being resolved into point sources. Of the other five sources, one is significantly contaminated by previously unresolved AGN, and four appear to be AGN misclassified as clusters. All but one of these cases are in the subset of less secure X-ray selected cluster detections and the false positive rate is consistent with that expected from the XXL selection function modelling. We also considered a further seven optically selected cluster candidates associated with faint XXL sources that were not classed as clusters. Of these, three were shown to be AGN by Chandra, one is a cluster whose XXL survey flux was highly contaminated by unresolved AGN, while three appear to be uncontaminated clusters. By decontaminating and vetting these distant clusters, we provide a pure sample of clusters at redshift z > 1 for deeper follow-up observations, and demonstrate the utility of using Chandra snapshots to test for AGN in surveys with high sensitivity but poor angular resolution.


1985 ◽  
Vol 107 (1) ◽  
pp. 29-34 ◽  
Author(s):  
L. K. Matthews ◽  
R. Viskanta ◽  
F. P. Incropera

An analysis is presented to predict the heat transfer characteristics of a plane layer of a semitransparent, high-temperature, porous material which is irradiated by an intense solar flux. A transient, combined conduction and radiation heat transfer model, which is based on a two-flux approximation for the radiation, is used to predict the temperature distribution and heat transfer in the material. Numerical results have been obtained using thermophysical and radiative properties of zirconia as a typical material. The results show that radiation is an important mode of heat transfer, even when the opacity of the material is large (τL > 100). Radiation is the dominant mode of heat transfer in the front third of the material and comparable to conduction toward the back. The semitransparency and high single scattering albedo of the zirconia combine to produce a maximum temperature in the interior of the material.


2016 ◽  
Vol 23 (5) ◽  
pp. 1210-1215 ◽  
Author(s):  
Jonathan Logan ◽  
Ross Harder ◽  
Luxi Li ◽  
Daniel Haskel ◽  
Pice Chen ◽  
...  

Recent progress in the development of dichroic Bragg coherent diffractive imaging, a new technique for simultaneous three-dimensional imaging of strain and magnetization at the nanoscale, is reported. This progress includes the installation of a diamond X-ray phase retarder at beamline 34-ID-C of the Advanced Photon Source. The performance of the phase retarder for tuning X-ray polarization is demonstrated with temperature-dependent X-ray magnetic circular dichroism measurements on a gadolinium foil in transmission and on a Gd5Si2Ge2crystal in diffraction geometry with a partially coherent, focused X-ray beam. Feasibility tests for dichroic Bragg coherent diffractive imaging are presented. These tests include (1) using conventional Bragg coherent diffractive imaging to determine whether the phase retarder introduces aberrations using a nonmagnetic gold nanocrystal as a control sample, and (2) collecting coherent diffraction patterns of a magnetic Gd5Si2Ge2nanocrystal with left- and right-circularly polarized X-rays. Future applications of dichroic Bragg coherent diffractive imaging for the correlation of strain and lattice defects with magnetic ordering and inhomogeneities are considered.


2006 ◽  
Vol 524-525 ◽  
pp. 273-278
Author(s):  
Thomas Wroblewski ◽  
A. Bjeoumikhov ◽  
Bernd Hasse

X-ray diffraction imaging applies an array of parallel capillaries in front of a position sensitive detector. Conventional micro channel plates of a few millimetre thickness have successfully been used as collimator arrays but require short sample to detector distances to achieve high spatial resolution. Furthermore, their limited absorption restricts their applications to low energy X-rays of around 10 keV. Progress in the fabrication of long polycapillaries allows an increase in the sample to detector distance without decreasing resolution and the use of high X-ray energies enables bulk investigations in transmission geometry.


2014 ◽  
Vol 35 (2) ◽  
pp. 65-92 ◽  
Author(s):  
Paweł Kuczyński ◽  
Ryszard Białecki

Abstract The paper deals with a solution of radiation heat transfer problems in enclosures filled with nonparticipating medium using ray tracing on hierarchical ortho-Cartesian meshes. The idea behind the approach is that radiative heat transfer problems can be solved on much coarser grids than their counterparts from computational fluid dynamics (CFD). The resulting code is designed as an add-on to OpenFOAM, an open-source CFD program. Ortho-Cartesian mesh involving boundary elements is created based upon CFD mesh. Parametric non-uniform rational basis spline (NURBS) surfaces are used to define boundaries of the enclosure, allowing for dealing with domains of complex shapes. Algorithm for determining random, uniformly distributed locations of rays leaving NURBS surfaces is described. The paper presents results of test cases assuming gray diffusive walls. In the current version of the model the radiation is not absorbed within gases. However, the ultimate aim of the work is to upgrade the functionality of the model, to problems in absorbing, emitting and scattering medium projecting iteratively the results of radiative analysis on CFD mesh and CFD solution on radiative mesh.


In a previous paper it was shown that 0·0007 per cent, of 29 Cu and 0·0003 per cent, of 26 Fe could be detected in 30 Zn by atomic analysis by X-ray spectroscopy. This sensitivity is greater than that which was claimed by Noddack, Tacke, and Berg, who set the limit at about 0·1 per cent, for non-metals, and by Hevesy, who stated it to be about 0·01 per cent, for an element present in an alloy. It was later suggested by Hevesy that the high value of the sensitivity which we found might result from the fact that some of the alloys we had used were composed of elements of almost equal atomic number, and that the sensitivity would be smaller for a constituent of low atomic number mixed with a major constituent of high atomic number. To elucidate these disagreements we have made further observations of the sensitivity with elements of different atomic number and have investigated the conditions which can influence the sensitivity. The Factors Determining Sensitivity . The detection of one element in a mixture of elements depends upon the identification of its K or L lines in the general spectrum emitted by the mixture under examination. The intensity with which these lines are excited in the target (“excited intensity”) is proportional to the number of atoms of the constituent element excited, i. e ., to its concentration and to the volume of the target in which the cathode ray energy is absorbed. The depth of penetration of the cathode rays is determined by the density of the target material and by their velocity ( i. e ., by the voltage applied to the X-ray tube). Schonland has shown that the range of homogeneous cathode rays in different elements, expressed as a mass per unit area, is approximately constant and is independent of the atomic number of the absorbing element. When their velocity is increased, the cathode rays will penetrate to a greater depth, and therefore a greater number of atoms of all constituents will be ionised. This will increase the “excited intensity” of the lines due to the particular constituent sought equally with those lines of the other elements present. The intensity of a line further depends upon the difference between the voltage applied to the X-ray tube and that necessary to excite the series. For these reasons, a high applied voltage is required for a high sensitivity.


2021 ◽  
Vol 54 (2) ◽  
pp. 597-603
Author(s):  
Mari Mizusawa ◽  
Kenji Sakurai

Conventional X-ray diffraction measurements provide some average structural information, mainly on the crystal structure of the whole area of the given specimen, which might not be very uniform and may include different crystal structures, such as co-existing crystal phases and/or lattice distortion. The way in which the lattice plane changes due to strain also might depend on the position in the sample, and the average information might have some limits. Therefore, it is important to analyse the sample with good lateral spatial resolution in real space. Although various techniques for diffraction topography have been developed for single crystals, it has not always been easy to image polycrystalline materials. Since the late 1990s, imaging technology for fluorescent X-rays and X-ray absorption fine structure has been developed via a method that does not scan either a sample or an X-ray beam. X-ray diffraction imaging can be performed when this technique is applied to a synchrotron radiation beamline with a variable wavelength. The present paper reports the application of X-ray diffraction imaging to bulk steel materials with varying hardness. In this study, the distribution of lattice distortion of hardness test blocks with different hardness was examined. Via this 2D visualization method, the grains of the crystals with low hardness are large enough to be observed by X-ray diffraction contrast in real space. The change of the d value in the vicinity of the Vickers mark has also been quantitatively evaluated.


1986 ◽  
Vol 30 ◽  
pp. 45-51 ◽  
Author(s):  
Monte C. Nichols ◽  
Dale R. Boehme ◽  
Richard W. Ryon ◽  
David Wherry ◽  
Brian Cross ◽  
...  

AbstractX-ray Microfluorescence (XRMF) analysis uses a finely collimated beam of X-rays to excite fluorescent radiation in a sample (Nichols & Ryon 1986). Characteristic fluorescent radiation emanating from the small interaction volume element is acquired using an energy dispersive detector placed in close proximity to the sample. The signal from the detector is processed using a computer-based multi-channel analyzer.XRMF imaging is accomplished by translating the sample through the small X-ray beam in a step or continuous raster mode. As the sample is translated, a pixel by pixel X-ray intensity image is formed for each chemical element in the sample. The resulting digitized image information for each element is stored for subsequent processing and/or display. The images, in the form of elemental maps representing identical areas, may be displayed and color coded by element and/or intensity and then overlayed for spatial correlation.The present study of parameters affecting the performance of an X-ray microfluorescence system has shown how such systems use X-ray beams with effective spot sizes less than 100 micrometers to bridge the gap in analytical capabilities between predominately surface micro analytical techniques such as SEM/EDX and bulk analytical methods such as standard XRF analysis. The combination of XRMF spectroscopy with digital imaging allows chemical information to be obtained and mapped from surface layers as well as from layers or structures beneath the sample surface. Simultaneously, it provides valuable high resolution chemical information in a readily interpreted visual form which displays the homogeneity within a given layer or structure. XRMF systems retain the advantages of minimal sample preparation, non-destructive analysis and high sensitivity inherent to XRF methods.


Sign in / Sign up

Export Citation Format

Share Document