L-allo-Threonine aldolase with an H128Y/S292R mutation fromAeromonas jandaeiDK-39 reveals the structural basis of changes in substrate stereoselectivity

2014 ◽  
Vol 70 (6) ◽  
pp. 1695-1703 ◽  
Author(s):  
Hui-Min Qin ◽  
Fabiana Lica Imai ◽  
Takuya Miyakawa ◽  
Michihiko Kataoka ◽  
Nahoko Kitamura ◽  
...  

L-allo-Threonine aldolase (LATA), a pyridoxal-5′-phosphate-dependent enzyme fromAeromonas jandaeiDK-39, stereospecifically catalyzes the reversible interconversion of L-allo-threonine to glycine and acetaldehyde. Here, the crystal structures of LATA and its mutant LATA_H128Y/S292R were determined at 2.59 and 2.50 Å resolution, respectively. Their structures implied that conformational changes in the loop consisting of residues Ala123–Pro131, where His128 moved 4.2 Å outwards from the active site on mutation to a tyrosine residue, regulate the substrate specificity for L-allo-threonineversusL-threonine. Saturation mutagenesis of His128 led to diverse stereoselectivity towards L-allo-threonine and L-threonine. Moreover, the H128Y mutant showed the highest activity towards the two substrates, with an 8.4-fold increase towards L-threonine and a 2.0-fold increase towards L-allo-threonine compared with the wild-type enzyme. The crystal structures of LATA and its mutant LATA_H128Y/S292R reported here will provide further insights into the regulation of the stereoselectivity of threonine aldolases targeted for the catalysis of L-allo-threonine/L-threonine synthesis.

2005 ◽  
Vol 71 (7) ◽  
pp. 3995-4003 ◽  
Author(s):  
Lingyun Rui ◽  
Li Cao ◽  
Wilfred Chen ◽  
Kenneth F. Reardon ◽  
Thomas K. Wood

ABSTRACT DNA shuffling and saturation mutagenesis of positions F108, L190, I219, D235, and C248 were used to generate variants of the epoxide hydrolase of Agrobacterium radiobacter AD1 (EchA) with enhanced enantioselectivity and activity for styrene oxide and enhanced activity for 1,2-epoxyhexane and epoxypropane. EchA variant I219F has more than fivefold-enhanced enantioselectivity toward racemic styrene oxide, with the enantiomeric ratio value (E value) for the production of (R)-1-phenylethane-1,2-diol increased from 17 for the wild-type enzyme to 91, as well as twofold-improved activity for the production of (R)-1-phenylethane-1,2-diol (1.96 ± 0.09 versus 1.04 ± 0.07 μmol/min/mg for wild-type EchA). Computer modeling indicated that this mutation significantly alters (R)-styrene oxide binding in the active site. Another three variants from EchA active-site engineering, F108L/C248I, I219L/C248I, and F108L/I219L/C248I, also exhibited improved enantioselectivity toward racemic styrene oxide in favor of production of the corresponding diol in the (R) configuration (twofold enhancement in their E values). Variant F108L/I219L/C248I also demonstrated 10-fold- and 2-fold-increased activity on 5 mM epoxypropane (24 ± 2 versus 2.4 ± 0.3 μmol/min/mg for the wild-type enzyme) and 5 mM 1,2-epoxyhexane (5.2 ± 0.5 versus 2.6 ± 0.0 μmol/min/mg for the wild-type enzyme). Both variants L190F (isolated from a DNA shuffling library) and L190Y (created from subsequent saturation mutagenesis) showed significantly enhanced activity for racemic styrene oxide hydrolysis, with 4.8-fold (8.6 ± 0.3 versus 1.8 ± 0.2 μmol/min/mg for the wild-type enzyme) and 2.7-fold (4.8 ± 0.8 versus 1.8 ± 0.2 μmol/min/mg for the wild-type enzyme) improvements, respectively. L190Y also hydrolyzed 1,2-epoxyhexane 2.5 times faster than the wild-type enzyme.


2019 ◽  
Vol 476 (21) ◽  
pp. 3227-3240 ◽  
Author(s):  
Shanshan Wang ◽  
Yanxiang Zhao ◽  
Long Yi ◽  
Minghe Shen ◽  
Chao Wang ◽  
...  

Trehalose-6-phosphate (T6P) synthase (Tps1) catalyzes the formation of T6P from UDP-glucose (UDPG) (or GDPG, etc.) and glucose-6-phosphate (G6P), and structural basis of this process has not been well studied. MoTps1 (Magnaporthe oryzae Tps1) plays a critical role in carbon and nitrogen metabolism, but its structural information is unknown. Here we present the crystal structures of MoTps1 apo, binary (with UDPG) and ternary (with UDPG/G6P or UDP/T6P) complexes. MoTps1 consists of two modified Rossmann-fold domains and a catalytic center in-between. Unlike Escherichia coli OtsA (EcOtsA, the Tps1 of E. coli), MoTps1 exists as a mixture of monomer, dimer, and oligomer in solution. Inter-chain salt bridges, which are not fully conserved in EcOtsA, play primary roles in MoTps1 oligomerization. Binding of UDPG by MoTps1 C-terminal domain modifies the substrate pocket of MoTps1. In the MoTps1 ternary complex structure, UDP and T6P, the products of UDPG and G6P, are detected, and substantial conformational rearrangements of N-terminal domain, including structural reshuffling (β3–β4 loop to α0 helix) and movement of a ‘shift region' towards the catalytic centre, are observed. These conformational changes render MoTps1 to a ‘closed' state compared with its ‘open' state in apo or UDPG complex structures. By solving the EcOtsA apo structure, we confirmed that similar ligand binding induced conformational changes also exist in EcOtsA, although no structural reshuffling involved. Based on our research and previous studies, we present a model for the catalytic process of Tps1. Our research provides novel information on MoTps1, Tps1 family, and structure-based antifungal drug design.


2019 ◽  
Vol 476 (6) ◽  
pp. 991-1003 ◽  
Author(s):  
Vijaykumar Pillalamarri ◽  
Tarun Arya ◽  
Neshatul Haque ◽  
Sandeep Chowdary Bala ◽  
Anil Kumar Marapaka ◽  
...  

Abstract Natural product ovalicin and its synthetic derivative TNP-470 have been extensively studied for their antiangiogenic property, and the later reached phase 3 clinical trials. They covalently modify the conserved histidine in Type 2 methionine aminopeptidases (MetAPs) at nanomolar concentrations. Even though a similar mechanism is possible in Type 1 human MetAP, it is inhibited only at millimolar concentration. In this study, we have discovered two Type 1 wild-type MetAPs (Streptococcus pneumoniae and Enterococcus faecalis) that are inhibited at low micromolar to nanomolar concentrations and established the molecular mechanism. F309 in the active site of Type 1 human MetAP (HsMetAP1b) seems to be the key to the resistance, while newly identified ovalicin sensitive Type 1 MetAPs have a methionine or isoleucine at this position. Type 2 human MetAP (HsMetAP2) also has isoleucine (I338) in the analogous position. Ovalicin inhibited F309M and F309I mutants of human MetAP1b at low micromolar concentration. Molecular dynamics simulations suggest that ovalicin is not stably placed in the active site of wild-type MetAP1b before the covalent modification. In the case of F309M mutant and human Type 2 MetAP, molecule spends more time in the active site providing time for covalent modification.


1991 ◽  
Vol 277 (3) ◽  
pp. 647-652 ◽  
Author(s):  
F Jacob ◽  
B Joris ◽  
J M Frère

By using site-directed mutagenesis, the active-site serine residue of the Streptomyces albus G beta-lactamase was substituted by alanine and cysteine. Both mutant enzymes were produced in Streptomyces lividans and purified to homogeneity. The cysteine beta-lactamase exhibited a substrate-specificity profile distinct from that of the wild-type enzyme, and its kcat./Km values at pH 7 were never higher than 0.1% of that of the serine enzyme. Unlike the wild-type enzyme, the activity of the mutant increased at acidic pH values. Surprisingly, the alanine mutant exhibited a weak but specific activity for benzylpenicillin and ampicillin. In addition, a very small production of wild-type enzyme, probably due to mistranslation, was detected, but that activity could be selectively eliminated. Both mutant enzymes were nearly as thermostable as the wild-type.


2006 ◽  
Vol 397 (1) ◽  
pp. 195-201 ◽  
Author(s):  
Jijun Hao ◽  
Willie F. Vann ◽  
Stephan Hinderlich ◽  
Munirathinam Sundaramoorthy

The most commonly occurring sialic acid Neu5Ac (N-acetylneuraminic acid) and its deaminated form, KDN (2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic acid), participate in many biological functions. The human Neu5Ac-9-P (Neu5Ac 9-phosphate) synthase has the unique ability to catalyse the synthesis of not only Neu5Ac-9-P but also KDN-9-P (KDN 9-phosphate). Both reactions are catalysed by the mechanism of aldol condensation of PEP (phosphoenolpyruvate) with sugar substrates, ManNAc-6-P (N-acetylmannosamine 6-phosphate) or Man-6-P (mannose 6-phosphate). Mouse and putative rat Neu5Ac-9-P synthases, however, do not show KDN-9-P synthase activity, despite sharing high sequence identity (>95%) with the human enzyme. Here, we demonstrate that a single mutation, M42T, in human Neu5Ac-9-P synthase can abolish the KDN-9-P synthase activity completely without compromising the Neu5Ac-9-P synthase activity. Saturation mutagenesis of Met42 of the human Neu5Ac-9-P synthase showed that the substitution with all amino acids except leucine retains only the Neu5Ac-9-P synthase activity at levels comparable with the wild-type enzyme. The M42L mutant, like the wild-type enzyme, showed the additional KDN-9-P synthase activity. In the homology model of human Neu5Ac-9-P synthase, Met42 is located 22 Å (1 Å=0.1 nm) away from the substrate-binding site and the impact of this distant residue on the enzyme functions is discussed.


2014 ◽  
Vol 70 (a1) ◽  
pp. C437-C437
Author(s):  
Aruna Bitra ◽  
Ruchi Anand

Guanine deaminases (GDs) are important enzymes involved in both purine metabolism and nucleotide anabolism pathways. Here we present the molecular and catalytic mechanism of NE0047 and use the information obtained to engineer specific enzyme activities. NE0047 from Nitrosomonas europaea was found to be a high fidelity guanine deaminase (catalytic efficiency of 1.2 × 105 M–1 s–1). However; it exhibited secondary activity towards the structurally non-analogous triazine based compound ammeline. The X-ray structure of NE0047 in the presence of the substrate analogue 8-azaguanine help establish that the enzyme exists as a biological dimer and both the proper closure of the C-terminal loop and cross talk via the dimeric interface is crucial for conferring catalytic activity. It was further ascertained that the highly conserved active site residues Glu79 and Glu143 facilitate the deamination reaction by serving as proton shuttles. Moreover, to understand the structural basis of dual substrate specificity, X-ray structures of NE0047 in complex with a series of nucleobase analogs, nucleosides and substrate ammeline were determined. The crystal structures demonstrated that any substitutions in the parent substrates results in the rearrangement of the ligand in a catalytically unfavorable orientation and also impede the closure of catalytically important loop, thereby abrogating activity. However, ammeline was able to adopt a catalytically favorable orientation which, also allowed for proper loop closure. Based on the above knowledge of the crystal structures and the catalytic mechanism, the active site was subsequently engineered to fine-tune NE0047 activity. The mutated versions of the enzyme were designed so that they can function either exclusively as a GD or serve as specific ammeline deaminases. For example, mutations in the active site E143D and N66A confer the enzyme to be an unambiguous GD with no secondary activity towards ammeline. On the other hand, the N66Q mutant of NE0047 only deaminates ammeline. Additionally, a series of crystal structures of the mutant versions were solved that shed light on the structural basis of this differential selectivity.


2020 ◽  
Vol 168 (5) ◽  
pp. 557-567
Author(s):  
Wanitcha Rachadech ◽  
Yusuke Kato ◽  
Rabab M Abou El-Magd ◽  
Yuji Shishido ◽  
Soo Hyeon Kim ◽  
...  

Abstract Human D-amino acid oxidase (DAO) is a flavoenzyme that is implicated in neurodegenerative diseases. We investigated the impact of replacement of proline with leucine at Position 219 (P219L) in the active site lid of human DAO on the structural and enzymatic properties, because porcine DAO contains leucine at the corresponding position. The turnover numbers (kcat) of P219L were unchanged, but its Km values decreased compared with wild-type, leading to an increase in the catalytic efficiency (kcat/Km). Moreover, benzoate inhibits P219L with lower Ki value (0.7–0.9 µM) compared with wild-type (1.2–2.0 µM). Crystal structure of P219L in complex with flavin adenine dinucleotide (FAD) and benzoate at 2.25 Å resolution displayed conformational changes of the active site and lid. The distances between the H-bond-forming atoms of arginine 283 and benzoate and the relative position between the aromatic rings of tyrosine 224 and benzoate were changed in the P219L complex. Taken together, the P219L substitution leads to an increase in the catalytic efficiency and binding affinity for substrates/inhibitors due to these structural changes. Furthermore, an acetic acid was located near the adenine ring of FAD in the P219L complex. This study provides new insights into the structure–function relationship of human DAO.


1999 ◽  
Vol 343 (2) ◽  
pp. 361-369 ◽  
Author(s):  
Patrick MASSON ◽  
Cécile CLÉRY ◽  
Patrice GUERRA ◽  
Arnaud REDSLOB ◽  
Christine ALBARET ◽  
...  

Wild-type human butyrylcholinesterase (BuChE) and Glu-197 → Asp and Asp-70 → Gly mutants (E197D and D70G respectively) were inhibited by di-isopropyl phosphorofluoridate under standard conditions of pH, temperature and pressure. The effect of hydrostatic and osmotic pressures on the aging process (dealkylation of an isopropyl chain) of phosphorylated enzymes [di-isopropylated (DIP)-BuChE] was investigated. Hydrostatic pressure markedly increased the rate of aging of wild-type enzyme. The average activation volume (δV≠) for the dealkylation reaction was -170 ml/mol for DIP wild-type BuChE. On the other hand, hydrostatic pressure had little effect on the aging of the DIP mutants (δV≠ = -2.6 ml/mol for E197D and -2 ml/mol for D70G), suggesting that the transition state of the aging process was associated with an extended hydration and conformational change in wild-type BuChE, but not in the mutants. The rate of aging of wild-type and mutant enzymes decreased with osmotic pressure, allowing very large positive osmotic activation volumes (δV≠osm) to be estimated, thus probing the participation of water in the aging process. Molecular dynamics simulations performed on the active-site gorge of the wild-type DIP adduct showed that the isopropyl chain involved in aging was highly solvated, supporting the idea that water is important for stabilizing the transition state of the dealkylation reaction. Wild-type BuChE was inhibited by soman (pinacolyl methylphosphonofluoridate). Electrophoresis performed under high pressure [up to 2.5 kbar (1 bar = 105 Pa)] showed that the soman-aged enzyme did not pass through a pressure-induced, molten-globule transition, unlike the native wild-type enzyme. Likewise, this transition was not seen for the native E197D and D70G mutants, indicating that these mutants are resistant to the penetration of water into their structure. The stability energetics of native and soman-aged wild-type BuChE were determined by differential scanning calorimetry. The pH-dependence of the midpoint transition temperature of endotherms indicated that the high difference in stabilization energy between aged and native BuChE (δδG = 23.7 kJ/mol at pH 8.0) is mainly due to the salt bridge between protonated His-438 and PO-, with pKHis-438 = 8.3. A molecular dynamics simulation on the MIP adduct showed that there is no water molecule around the ion pair. The ‘hydrostatic versus osmotic pressure’ approach probed the importance of water in aging, and also revealed that Asp-70 and Glu-197 are the major residues controlling both the dynamics and the structural organization of the water/hydrogen-bond network in the active-site gorge of BuChE. In wild-type BuChE both residues function like valves, whereas in the mutant enzymes the water network is slack, and residues Gly-70 and Asp-197 function like check valves, i.e. forced penetration of water into the gorge is not easily achieved, thereby facilitating the release of water.


2000 ◽  
Vol 352 (3) ◽  
pp. 685-691 ◽  
Author(s):  
Tatuya OHTA ◽  
Syuhei ISHIKURA ◽  
Syunichi SHINTANI ◽  
Noriyuki USAMI ◽  
Akira HARA

Human dihydrodiol dehydrogenase with 3α-hydroxysteroid dehydrogenase activity exists in four forms (AKR1C1Ő1C4) that belong to the aldoŐketo reductase (AKR) family. Recent crystallographic studies on the other proteins in this family have indicated a role for a tyrosine residue (corresponding to position 216 in these isoenzymes) in stacking the nicotinamide ring of the coenzyme. This tyrosine residue is conserved in most AKR family members including AKR1C1Ő1C3, but is replaced with histidine in AKR1C4 and phenylalanine in some AKR members. In the present study we prepared mutant enzymes of AKR1C4 in which His-216 was replaced with tyrosine or phenylalanine. The two mutations decreased 3-fold the Km for NADP+ and differently influenced the Km and kcat for substrates depending on their structures. The kinetic constants for bile acids with a 12α-hydroxy group were decreased 1.5Ő7-fold and those for the other substrates were increased 1.3Ő9-fold. The mutation also yielded different changes in sensitivity to competitive inhibitors such as hexoestrol analogues, 17β-oestradiol, phenolphthalein and flufenamic acid and 3,5,3´,5´-tetraiodothyropropionic acid analogues. Furthermore, the mutation decreased the stimulatory effects of the enzyme activity by sulphobromophthalein, clofibric acid and thyroxine, which increased the Km for the coenzyme and substrate of the mutant enzymes more highly than those of the wild-type enzyme. These results indicate the importance of this histidine residue in creating the cavity of the substrate-binding site of AKR1C4 through the orientation of the nicotinamide ring of the coenzyme, as well as its involvement in the conformational change by binding non-essential activators.


Sign in / Sign up

Export Citation Format

Share Document