Soft X-ray ARPES for three-dimensional crystals in the micrometre region

2021 ◽  
Vol 28 (5) ◽  
Author(s):  
Takayuki Muro ◽  
Yasunori Senba ◽  
Haruhiko Ohashi ◽  
Takuo Ohkochi ◽  
Tomohiro Matsushita ◽  
...  

An endstation dedicated to angle-resolved photoemission spectroscopy (ARPES) using a soft X-ray microbeam has been developed at the beamline BL25SU of SPring-8. To obtain a high photoemission intensity, this endstation is optimized for measurements under the condition of grazing beam incidence to a sample surface, where the glancing angle is 5° or smaller. A Wolter mirror is used for focusing the soft X-rays. Even at the glancing angle of 5°, the smallest beam spot still having a sufficient photon flux for ARPES is almost round on the sample surface and the FWHM diameter is ∼5 µm. There is no need to change the sample orientation for performing k x − k y mapping by virtue of the electron lens with a deflector of the photoelectron analyzer, which makes it possible to keep the irradiation area unchanged. A partially cleaved surface area as small as ∼20 µm was made on an Si(111) wafer and ARPES measurements were performed. The results are presented.

1998 ◽  
Vol 5 (3) ◽  
pp. 902-904 ◽  
Author(s):  
Takashi Noma ◽  
Atsuo Iida

An X-ray diffraction technique using a hard X-ray microbeam for thin-film analysis has been developed. To optimize the spatial resolution and the surface sensitivity, the X-ray microbeam strikes the sample surface at a large glancing angle while the diffracted X-ray signal is detected with a small (grazing) exit angle. Kirkpatrick–Baez optics developed at the Photon Factory were used, in combination with a multilayer monochromator, for focusing X-rays. The focused beam size was about 10 × 10 µm. X-ray diffraction patterns of Pd, Pt and their layered structure were measured. Using a small exit angle, the signal-to-background ratio was improved due to a shallow escape depth. Under the grazing-exit condition, the refraction effect of diffracted X-rays was observed, indicating the possibility of surface sensitivity.


2009 ◽  
Vol 7 (42) ◽  
pp. 49-59 ◽  
Author(s):  
Rolf Zehbe ◽  
Astrid Haibel ◽  
Heinrich Riesemeier ◽  
Ulrich Gross ◽  
C. James Kirkpatrick ◽  
...  

Current light microscopic methods such as serial sectioning, confocal microscopy or multiphoton microscopy are severely limited in their ability to analyse rather opaque biological structures in three dimensions, while electron optical methods offer either a good three-dimensional topographic visualization (scanning electron microscopy) or high-resolution imaging of very thin samples (transmission electron microscopy). However, sample preparation commonly results in a significant alteration and the destruction of the three-dimensional integrity of the specimen. Depending on the selected photon energy, the interaction between X-rays and biological matter provides semi-transparency of the specimen, allowing penetration of even large specimens. Based on the projection-slice theorem, angular projections can be used for tomographic imaging. This method is well developed in medical and materials science for structure sizes down to several micrometres and is considered as being non-destructive. Achieving a spatial and structural resolution that is sufficient for the imaging of cells inside biological tissues is difficult due to several experimental conditions. A major problem that cannot be resolved with conventional X-ray sources are the low differences in density and absorption contrast of cells and the surrounding tissue. Therefore, X-ray monochromatization coupled with a sufficiently high photon flux and coherent beam properties are key requirements and currently only possible with synchrotron-produced X-rays. In this study, we report on the three-dimensional morphological characterization of articular cartilage using synchrotron-generated X-rays demonstrating the spatial distribution of single cells inside the tissue and their quantification, while comparing our findings to conventional histological techniques.


2015 ◽  
Vol 22 (3) ◽  
pp. 776-780 ◽  
Author(s):  
Hidenori Fujiwara ◽  
Takayuki Kiss ◽  
Yuki K. Wakabayashi ◽  
Yoshito Nishitani ◽  
Takeo Mori ◽  
...  

Soft X-ray angle-resolved photoemission has been performed for metallic V2O3. By combining a microfocus beam (40 µm × 65 µm) and micro-positioning techniques with a long-working-distance microscope, it has been possible to observe band dispersions from tiny cleavage surfaces with a typical size of several tens of µm. The photoemission spectra show a clear position dependence, reflecting the morphology of the cleaved sample surface. By selecting high-quality flat regions on the sample surface, it has been possible to perform band mapping using both photon-energy and polar-angle dependences, opening the door to three-dimensional angle-resolved photoemission spectroscopy for typical three-dimensional correlated materials where large cleavage planes are rarely obtained.


Author(s):  
A.J. Tousimis

An integral and of prime importance of any microtopography and microanalysis instrument system is its electron, x-ray and ion detector(s). The resolution and sensitivity of the electron microscope (TEM, SEM, STEM) and microanalyzers (SIMS and electron probe x-ray microanalyzers) are closely related to those of the sensing and recording devices incorporated with them.Table I lists characteristic sensitivities, minimum surface area and depth analyzed by various methods. Smaller ion, electron and x-ray beam diameters than those listed, are possible with currently available electromagnetic or electrostatic columns. Therefore, improvements in sensitivity and spatial/depth resolution of microanalysis will follow that of the detectors. In most of these methods, the sample surface is subjected to a stationary, line or raster scanning photon, electron or ion beam. The resultant radiation: photons (low energy) or high energy (x-rays), electrons and ions are detected and analyzed.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1271
Author(s):  
Andreas Koenig ◽  
Leonie Schmohl ◽  
Johannes Scheffler ◽  
Florian Fuchs ◽  
Michaela Schulz-Siegmund ◽  
...  

The aim of the study was to investigate the effect of X-rays used in micro X-ray computer tomography (µXCT) on the mechanical performance and microstructure of a variety of dental materials. Standardised bending beams (2 × 2 × 25 mm3) were forwarded to irradiation with an industrial tomograph. Using three-dimensional datasets, the porosity of the materials was quantified and flexural strength was investigated prior to and after irradiation. The thermal properties of irradiated and unirradiated materials were analysed and compared by means of differential scanning calorimetry (DSC). Single µXCT measurements led to a significant decrease in flexural strength of polycarbonate with acrylnitril-butadien-styrol (PC-ABS). No significant influence in flexural strength was identified for resin-based composites (RBCs), poly(methyl methacrylate) (PMMA), and zinc phosphate cement (HAR) after a single irradiation by measurement. However, DSC results suggest that changes in the microstructure of PMMA are possible with increasing radiation doses (multiple measurements, longer measurements, higher output power from the X-ray tube). In summary, it must be assumed that X-ray radiation during µXCT measurement at high doses can lead to changes in the structure and properties of certain polymers.


Author(s):  
Theodore J. Heindel ◽  
Terrence C. Jensen ◽  
Joseph N. Gray

There are several methods available to visualize fluid flows when one has optical access. However, when optical access is limited to near the boundaries or not available at all, alternative visualization methods are required. This paper will describe flow visualization using an X-ray system that is capable of digital X-ray radiography, digital X-ray stereography, and digital X-ray computed tomography (CT). The unique X-ray flow visualization facility will be briefly described, and then flow visualization of various systems will be shown. Radiographs provide a two-dimensional density map of a three dimensional process or object. Radiographic images of various multiphase flows will be presented. When two X-ray sources and detectors simultaneously acquire images of the same process or object from different orientations, stereographic imaging can be completed; this type of imaging will be demonstrated by trickling water through packed columns and by absorbing water in a porous medium. Finally, local time-averaged phase distributions can be determined from X-ray computed tomography (CT) imaging, and this will be shown by comparing CT images from two different gas-liquid sparged columns.


1998 ◽  
Vol 4 (S2) ◽  
pp. 378-379
Author(s):  
Z. W. Chen ◽  
D. B. Wittry

A monochromatic x-ray microprobe based on a laboratory source has recently been developed in our laboratory and used for fluorescence excitation. This technique provides high sensitivity (ppm to ppb), nondestructive, quantitative microanalysis with minimum sample preparation and does not require a high vacuum specimen chamber. It is expected that this technique (MMXRF) will have important applications in materials science, geological sciences and biological science.Three-dimensional focusing of x-rays can be obtained by using diffraction from doubly curved crystals. In our MMXRF setup, a small x-ray source was produced by the bombardment of a selected target with a focused electron beam and a toroidal mica diffractor with Johann pointfocusing geometry was used to focus characteristic x-rays from the source. In the previous work ∼ 108 photons/s were obtained in a Cu Kα probe of 75 μm × 43 μm in the specimen plane using the fifth order reflection of the (002) planes of mica.


2016 ◽  
Vol 23 (5) ◽  
pp. 1210-1215 ◽  
Author(s):  
Jonathan Logan ◽  
Ross Harder ◽  
Luxi Li ◽  
Daniel Haskel ◽  
Pice Chen ◽  
...  

Recent progress in the development of dichroic Bragg coherent diffractive imaging, a new technique for simultaneous three-dimensional imaging of strain and magnetization at the nanoscale, is reported. This progress includes the installation of a diamond X-ray phase retarder at beamline 34-ID-C of the Advanced Photon Source. The performance of the phase retarder for tuning X-ray polarization is demonstrated with temperature-dependent X-ray magnetic circular dichroism measurements on a gadolinium foil in transmission and on a Gd5Si2Ge2crystal in diffraction geometry with a partially coherent, focused X-ray beam. Feasibility tests for dichroic Bragg coherent diffractive imaging are presented. These tests include (1) using conventional Bragg coherent diffractive imaging to determine whether the phase retarder introduces aberrations using a nonmagnetic gold nanocrystal as a control sample, and (2) collecting coherent diffraction patterns of a magnetic Gd5Si2Ge2nanocrystal with left- and right-circularly polarized X-rays. Future applications of dichroic Bragg coherent diffractive imaging for the correlation of strain and lattice defects with magnetic ordering and inhomogeneities are considered.


2010 ◽  
pp. 109-117 ◽  
Author(s):  
Neda Motchurova-Dekova ◽  
David Harper

Synchrotron radiation X-ray tomographic microscopy (SRXTM) is a non-destructive technique for the investigation and visualization of the internal features of solid opaque objects, which allows reconstruction of a complete three-dimensional image of internal structures by recording of the differences in the effects on the passage of waves of energy reacting with those structures. Contrary to X-rays, produced in a conventional X-ray tube, the intense synchrotron light beams are sharply focused like a laser beam. We report encouraging results from the use of SRXTM for purely taxonomic purposes in brachiopods: an attempt to find a non-destructive and more efficient alternative to serial sectioning and several other methods of dissection together with the non-destructive method of X-ray computerised micro-tomography. Two brachiopod samples were investigated using SRXTM. In ?Rhynchonella? flustracea it was possible to visualise the 3D shape of the crura and dental plates. In Terebratulina imbricata it was possible to reveal the form of the brachidium. It is encouraging that we have obtained such promising results using SRXTM with our very first two fortuitous samples, which had respectively fine-grained limestone and marl as infilling sediment, in contrast to the discouraging results communicated to us by some colleagues who have tested specimens with such infillings using X-ray micro-tomography. In future the holotypes, rare museum specimens or delicate Recent material may be preferentially subjected to this mode of analysis.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1733-C1733
Author(s):  
Martin Fuchs ◽  
Robert Sweet ◽  
Lonny Berman ◽  
Dileep Bhogadi ◽  
Wayne Hendrickson ◽  
...  

We present the final design of the x-ray optical systems and experimental stations of the two macromolecular crystallography (MX) beamlines, FMX and AMX, at the National Synchrotron Light Source-II (NSLS-II). Along with its companion x-ray scattering beamline, LIX, this suite of Advanced Beamlines for Biological Investigations with X-rays (ABBIX, [1]) will begin user operation in 2016. The pair of MX beamlines with complementary and overlapping capabilities is located at canted undulators (IVU21) in sector 17-ID. The Frontier Microfocusing Macromolecular Crystallography beamline (FMX) will deliver a photon flux of ~5x10^12 ph/s at a wavelength of 1 Å into a spot of 1 - 50 µm size. It will cover a broad energy range from 5 - 30 keV, corresponding to wavelengths from 0.4 - 2.5 Å. The highly Automated Macromolecular Crystallography beamline (AMX) will be optimized for high throughput applications, with beam sizes from 4 - 100 µm, an energy range of 5 - 18 keV (0.7 - 2.5 Å), and a flux at 1 Å of ~10^13 ph/s. Central components of the in-house-developed experimental stations are a 100 nm sphere of confusion goniometer with a horizontal axis, piezo-slits to provide dynamic beam size changes during diffraction experiments, a dedicated secondary goniometer for crystallization plates, and sample- and plate-changing robots. FMX and AMX will support a broad range of biomedical structure determination methods from serial crystallography on micron-sized crystals, to structure determination of complexes in large unit cells, to rapid sample screening and data collection of crystals in trays, for instance to characterize membrane protein crystals and to conduct ligand-binding studies. Together with the solution scattering program at LIX, the new beamlines will offer unique opportunities for advanced diffraction experiments with micro- and mini-beams, with next generation hybrid pixel array detectors and emerging crystal delivery methods such as acoustic droplet ejection. This work is supported by the US National Institutes of Health.


Sign in / Sign up

Export Citation Format

Share Document