scholarly journals Experimental evidence for the benefits of higher X-ray energies for macromolecular crystallography

IUCrJ ◽  
2021 ◽  
Vol 8 (6) ◽  
Author(s):  
Selina L. S. Storm ◽  
Danny Axford ◽  
Robin L. Owen

X-ray-induced radiation damage is a limiting factor for the macromolecular crystallographer and data must often be merged from many crystals to yield complete data sets for the structure solution of challenging samples. Increasing the X-ray energy beyond the typical 10–15 keV range promises to provide an extension of crystal lifetime via an increase in diffraction efficiency. To date, however, hardware limitations have negated any possible gains. Through the first use of a cadmium telluride EIGER2 detector and a beamline optimized for high-energy data collection, it is shown that at higher energies fewer crystals will be required to obtain complete data, as the diffracted intensity per unit dose increases by a factor of more than two between 12.4 and 25 keV. Additionally, these higher energy data can provide more information, as shown by a systematic increase in the high-resolution cutoff of the data collected. Taken together, these gains point to a high-energy future for synchrotron-based macromolecular crystallography.

2021 ◽  
Author(s):  
S. L. S. Storm ◽  
D. Axford ◽  
R. L. Owen

AbstractX-ray induced radiation damage is a limiting factor for the macromolecular crystallographer and data must often be merged from many crystals to yield complete datasets for structure solution of challenging samples. Increasing the X-ray energy beyond the typical 10-15 keV range promises to provide an extension of crystal lifetime via an increase in diffraction efficiency. To date however hardware limitations have negated any possible gains. Through the first use of a Cadmium Telluride Eiger2 detector and a beamline optimised for high energy data collection, we show that at higher energies fewer crystals will be required to obtain complete data, as the diffracted intensity per unit dose increases by a factor of more than 3 between 12.4 and 25 keV. Additionally, those higher energy data provide more information, evidenced by an increase in high-resolution limit of up to 0.3 Å, pointing to a high energy future for synchrotron-based macromolecular crystallography.


2014 ◽  
Vol 47 (5) ◽  
pp. 1781-1783 ◽  
Author(s):  
Helen Mary Ginn ◽  
Ghita Kouadri Mostefaoui ◽  
Karl Erik Levik ◽  
Jonathan Mark Grimes ◽  
Martin Austin Walsh ◽  
...  

The macromolecular crystallography (MX) user experience at synchrotron radiation facilities continues to evolve, with the impact of developments in X-ray detectors, computer hardware and automation methods making it possible for complete data sets to be collected on timescales of tens of seconds. Data can be reduced in a couple of minutes and in favourable cases structures solved and refined shortly after. The information-rich database ISPyB, automatically populated by data acquisition software, data processing and structure solution pipelines at the Diamond Light Source beamlines, allows users to automatically track MX experiments in real time. In order to improve the synchrotron users' experience, efficient access to the data contained in ISPyB is now providedviaan iOS 6.0+ app for iPhones and iPads. This provides users, both local and remote, with a succinct summary of data collection, visualization of diffraction images and crystals, and key metrics for data quality in real time.


2016 ◽  
Vol 23 (6) ◽  
pp. 1462-1473 ◽  
Author(s):  
Sebastian Cartier ◽  
Matias Kagias ◽  
Anna Bergamaschi ◽  
Zhentian Wang ◽  
Roberto Dinapoli ◽  
...  

MÖNCH is a 25 µm-pitch charge-integrating detector aimed at exploring the limits of current hybrid silicon detector technology. The small pixel size makes it ideal for high-resolution imaging. With an electronic noise of about 110 eV r.m.s., it opens new perspectives for many synchrotron applications where currently the detector is the limiting factor,e.g.inelastic X-ray scattering, Laue diffraction and soft X-ray or high-resolution color imaging. Due to the small pixel pitch, the charge cloud generated by absorbed X-rays is shared between neighboring pixels for most of the photons. Therefore, at low photon fluxes, interpolation algorithms can be applied to determine the absorption position of each photon with a resolution of the order of 1 µm. In this work, the characterization results of one of the MÖNCH prototypes are presented under low-flux conditions. A custom interpolation algorithm is described and applied to the data to obtain high-resolution images. Images obtained in grating interferometry experiments without the use of the absorption grating G2are shown and discussed. Perspectives for the future developments of the MÖNCH detector are also presented.


1994 ◽  
Author(s):  
Salim Abdali ◽  
Finn E. Christensen ◽  
Herbert W. Schnopper ◽  
Thomas H. Markert ◽  
Daniel Dewey ◽  
...  

2021 ◽  
Author(s):  
Qiang Sun ◽  
Ya-Wei Liu ◽  
Yuan-Chen Xu ◽  
Li-Han Wang ◽  
Tian-Jun Li ◽  
...  

Abstract The oscillator strengths of the valence-shell excitations of C2H2 are extremely important for testing theoretical models and studying interstellar gases. In this study, the high-resolution inelastic x-ray scattering (IXS) method is adopted to determine the generalized oscillator strengths (GOSs) of the valence-shell excitations of C2H2 at a photon energy of 10 keV. The GOSs are extrapolated to their zero limit to obtain the corresponding optical oscillator strengths (OOSs). Through taking a completely different experimental method of the IXS, the present results offer the high energy limit for electron collision to satisfy the first Born approximation (FBA) and cross-check the previous experimental and theoretical results independently. The comparisons indicate that an electron collision energy of 1500 eV is not enough for C2H2 to satisfy the FBA for the large squared momentum transfer, and the line saturation effect limits the accuracy of the OOSs measured by the photoabsorption method.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Hanzhe Liu ◽  
Giulio Vampa ◽  
Jingyuan Linda Zhang ◽  
Yu Shi ◽  
Siddharth Buddhiraju ◽  
...  

Abstract Since the new millennium coherent extreme ultra-violet and soft x-ray radiation has revolutionized the understanding of dynamical physical, chemical and biological systems at the electron’s natural timescale. Unfortunately, coherent laser-based upconversion of infrared photons to vacuum-ultraviolet and soft x-ray high-order harmonics in gaseous, liquid and solid targets is notoriously inefficient. In dense nonlinear media, the limiting factor is strong re-absorption of the generated high-energy photons. Here we overcome this limitation by generating high-order harmonics from a periodic array of thin one-dimensional crystalline silicon ridge waveguides. Adding vacuum gaps between the ridges avoids the high absorption loss of the bulk and results in a ~ 100-fold increase of the extraction depth. As the grating period is varied, each high harmonic shows a different and marked modulation, indicating their waveguiding in the vacuum slots with reduced absorption. Looking ahead, our results enable bright on-chip coherent short-wavelength sources and may extend the usable spectral range of traditional nonlinear crystals to their absorption windows. Potential applications include on-chip chemically-sensitive spectro-nanoscopy.


2004 ◽  
Vol 194 ◽  
pp. 208-208
Author(s):  
J. M. Torrejón ◽  
I. Kreykenbohni ◽  
A. Orr ◽  
L. Titarchuk ◽  
I. Negueruela

We present an analysis of archival RXTE and BeppoSAX data of the X-ray source 4U2206+54. For the first time, high energy data (≥ 30 keV) is analyzed. The data is well described by comptonization models in which seed photons with temperatures between 1.1 keV arid 1.5 keV are comptonized by a hot plasma at 50 keV thereby producing a hard tail which extends up to 100 keV. From luminosity arguments it is shown that the area of the soft photons source must be small (r ≈ 1 km) and that the presence of an accretion disk in this system is unlikely. Here we report on the possible existence of a cyclotron line around 30 keV . The presence of a neutron star in the system is strongly favored by the available data.


Author(s):  
Mette Stokkebro Schmøkel ◽  
Lasse Bjerg ◽  
Finn Krebs Larsen ◽  
Jacob Overgaard ◽  
Simone Cenedese ◽  
...  

CoSb3is an example of a highly challenging case for experimental charge-density analysis due to the heavy elements (suitability factor of ∼0.01), the perfect crystallinity and the high symmetry of the compound. It is part of a family of host–guest structures that are potential candidates for use as high-performance thermoelectric materials. Obtaining and analysing accurate charge densities of the undoped host structure potentially can improve the understanding of the thermoelectric properties of this family of materials. In a previous study, analysis of the electron density gave a picture of covalent Co–Sb and Sb–Sb interactions together with relatively low atomic charges based on state-of-the-art experimental and theoretical data. In the current study, several experimental X-ray diffraction data sets collected on the empty CoSb3framework are compared in order to probe the experimental requirements for obtaining data of high enough quality for charge-density analysis even in the case of very unsuitable crystals. Furthermore, the quality of the experimental structure factors is tested by comparison with theoretical structure factors obtained from periodic DFT calculations. The results clearly show that, in the current study, the data collected on high-intensity, high-energy synchrotron sources and very small crystals are superior to data collected at conventional sources, and in fact necessary for a meaningful charge-density study, primarily due to greatly diminished effects of extinction and absorption which are difficult to correct for with sufficient accuracy.


1992 ◽  
Vol 63 (1) ◽  
pp. 615-618 ◽  
Author(s):  
Y. Nagata ◽  
H. Yamaji ◽  
K. Hayashi ◽  
K. Kawashima ◽  
K. Hyodo ◽  
...  

2014 ◽  
Vol 47 (3) ◽  
pp. 1042-1053 ◽  
Author(s):  
Andras Borbely ◽  
Loic Renversade ◽  
Peter Kenesei ◽  
Jonathan Wright

The geometry of high-energy X-ray diffraction setups using an area detector and a rotation axis is analysed. The present paper (part 1) describes the methodology for determining continuously varying spatial distortions and tilt of the area detector based on the reference diffraction rings of a certified powder. Analytical expressions describing the degeneration of Debye rings into ellipses are presented and a robust calibration procedure is introduced. It is emphasized that accurate detector calibration requires the introduction of spatial distortion into the equation describing the tilt. The method is applied to data sets measured at the Advanced Photon Source and at the European Synchrotron Radiation Facility using detectors with different physical characteristics, the GE 41RT flat-panel and the FReLoN4M detector, respectively. The spatial distortion of the detectors is compared with regard to their use in structural and strain tensor analysis, a subject treated in part 2 of the calibration work [Borbély, Renversade & Kenesei (2014).J. Appl. Cryst.Submitted].


Sign in / Sign up

Export Citation Format

Share Document