scholarly journals Three new acid M + arsenates and phosphates with multiply protonated As/PO4 groups

2019 ◽  
Vol 75 (8) ◽  
pp. 1134-1141 ◽  
Author(s):  
Karolina Schwendtner ◽  
Uwe Kolitsch

The crystal structures of caesium dihydrogen arsenate(V) bis[trihydrogen arsenate(V)], Cs(H2AsO4)(H3AsO4)2, ammonium dihydrogen arsenate(V) trihydrogen arsenate(V), NH4(H2AsO4)(H3AsO4), and dilithium bis(dihydrogen phosphate), Li2(H2PO4)2, were solved from single-crystal X-ray diffraction data. NH4(H2AsO4)(H3AsO4), which was hydrothermally synthesized (T = 493 K), is homeotypic with Rb(H2AsO4)(H3AsO4), while Cs(H2AsO4)(H3AsO4)2 crystallizes in a novel structure type and Li2(H2PO4)2 represents a new polymorph of this composition. The Cs and Li compounds grew at room temperature from highly acidic aqueous solutions. Li2(H2PO4)2 forms a three-dimensional (3D) framework of PO4 tetrahedra sharing corners with Li2O6 dimers built of edge-sharing LiO4 groups, which is reinforced by hydrogen bonds. The two arsenate compounds are characterized by a 3D network of AsO4 groups that are connected solely via multiple strong hydrogen bonds. A statistical evaluation of the As—O bond lengths in singly, doubly and triply protonated AsO4 groups gave average values of 1.70 (2) Å for 199 As—OH bonds, 1.728 (19) Å for As—OH bonds in HAsO4 groups, 1.714 (12) Å for As—OH bonds in H2AsO4 groups and 1.694 (16) Å for As—OH bonds in H3AsO4 groups, and a grand mean value of 1.667 (18) Å for As—O bonds to nonprotonated O atoms.

Author(s):  
Owen P. Missen ◽  
Matthias Weil ◽  
Stuart J. Mills ◽  
Eugen Libowitzky

Crystals of the first synthetic copper tellurite arsenate, CuII 5(TeIVO3)2(AsVO4)2 [systematic name pentacopper(II) bis-oxotellurate(IV) bis-oxoarsenate(V)], were grown by the chemical vapour transport method and structurally determined using single-crystal X-ray diffraction. CuII 5(TeIVO3)2(AsVO4)2 possesses a novel structure type including a new topological arrangement of CuII and O atoms. CuII 5(TeIVO3)2(AsVO4)2 is formed from a framework of two types of Jahn–Teller distorted [CuIIO6] octahedra (one of which is considerably elongated) and [CuIIO5] square pyramids, which are linked by edge-sharing to form chains and dimers and by corner-sharing to complete a three-dimensional framework. [AsVO4] tetrahedra and [TeIVO5] polyhedra bridge the edges of channels along the a-axis direction, with void space remaining for the TeIV stereoactive 5s 2 lone pairs. A comparison is made between the crystal structure of CuII 5(TeIVO3)2(AsVO4)2 and those of known compounds and minerals, in particular fumarolitic Cu minerals.


Author(s):  
Karolina Schwendtner ◽  
Uwe Kolitsch

The crystal structures of hydrothermally synthesized silver(I) aluminium bis[hydrogen arsenate(V)], AgAl(HAsO4)2, silver(I) gallium bis[hydrogen arsenate(V)], AgGa(HAsO4)2, silver gallium diarsenate(V), AgGaAs2O7, and sodium gallium diarsenate(V), NaGaAs2O7, were determined from single-crystal X-ray diffraction data collected at room temperature. The first two compounds are representatives of the MCV-3 structure type known for KSc(HAsO4)2, which is characterized by a three-dimensional anionic framework of corner-sharing alternatingM3+O6octahedra (M= Al, Ga) and singly protonated AsO4tetrahedra. Intersecting channels parallel to [101] and [110] host the Ag+cations, which are positionally disordered in the Ga compound, but not in the Al compound. The hydrogen bonds are relatively strong, with O...O donor–acceptor distances of 2.6262 (17) and 2.6240 (19) Å for the Al and Ga compounds, respectively. The two diarsenate compounds are representatives of the NaAlAs2O7structure type, characterized by an anionic framework topology built ofM3+O6octahedra (M= Al, Ga) sharing corners with diarsenate groups, andM+cations (M= Ag) hosted in the voids of the framework. Both structures are characterized by a staggered conformation of the As2O7groups.


2019 ◽  
Vol 75 (5) ◽  
pp. 575-583 ◽  
Author(s):  
Yuting Bai ◽  
Meirong Han ◽  
Enxi Wu ◽  
Sisi Feng ◽  
Miaoli Zhu

Two three-dimensional (3D) CdII coordination polymers, namely poly[[di-μ-aqua-diaquabis{μ5-4,4′,4′′-[benzene-1,3,5-triyltris(oxy)]tribenzoato}tricadmium(II)] dihydrate], {[Cd3(C27H15O9)2(H2O)4]·2H2O} n , (I), and poly[[aqua{μ6-4,4′,4′′-[benzene-1,3,5-triyltris(oxy)]tribenzoato}(μ-formato)[μ-1,1′-(1,4-phenylene)bis(1H-imidazole)]dicadmium(II)] dihydrate], {[Cd2(C27H15O9)(C12H10N4)(HCOO)(H2O)]·2H2O} n , (II), have been hydrothermally synthesized from the reaction system containing Cd(NO3)2·4H2O and the flexible tripodal ligand 1,3,5-tris(4-carboxyphenoxy)benzene (H3tcpb) via tuning of the auxiliary ligand. Both complexes have been characterized by single-crystal X-ray diffraction analysis, elemental analysis, IR spectra, powder X-ray diffraction and thermogravimetric analysis. Complex (I) is a 3D framework constructed from trinuclear structural units and tcpb3− ligands in a μ5-coordination mode. The central CdII atom of the trinuclear unit is located on a crystallographic inversion centre and adopts an octahedral geometry. The metal atoms are bridged by four syn–syn carboxylate groups and two μ2-water molecules to form trinuclear [Cd3(COO)4(μ2-H2O)2] secondary building units (SBUs). These SBUs are incorporated into clusters by bridging carboxylate groups to produce pillars along the c axis. The one-dimensional inorganic pillars are connected by tcpb3− linkers in a μ5-coordination mode, thus forming a 3D network; its topology corresponds to the point symbol (42.62.82)(44.62)2(45.66.84)2. In contrast to (I), complex (II) is characterized by a 3D framework based on dinuclear cadmium SBUs, i.e. [Cd2(COO)3]. The two symmetry-independent CdII ions display different coordinated geometries, namely octahedral [CdN2O4] and monocapped octahedral [CdO7]. The dinuclear SBUs are incorporated into clusters by bridging formate groups to produce pillars along the c axis. These pillars are further bridged either by tcpb3− ligands into sheets or by 1,4-bis(imidazol-1-yl)benzene ligands into undulating layers, and finally these two-dimensional surfaces interweave, forming a 3D structure with the point symbol (4.62)(47.614). Compound (II) exhibits reversible I2 uptake of 56.8 mg g−1 with apparent changes in the visible colour and the UV–Vis and fluorescence spectra, and therefore may be regarded as a potential reagent for the capture and release of I2.


IUCrJ ◽  
2014 ◽  
Vol 1 (2) ◽  
pp. 136-150 ◽  
Author(s):  
Palash Sanphui ◽  
Geetha Bolla ◽  
Ashwini Nangia ◽  
Vladimir Chernyshev

Acemetacin (ACM) is a non-steroidal anti-inflammatory drug (NSAID), which causes reduced gastric damage compared with indomethacin. However, acemetacin has a tendency to form a less soluble hydrate in the aqueous medium. We noted difficulties in the preparation of cocrystals and salts of acemetacin by mechanochemical methods, because this drug tends to form a hydrate during any kind of solution-based processing. With the objective to discover a solid form of acemetacin that is stable in the aqueous medium, binary adducts were prepared by the melt method to avoid hydration. The coformers/salt formers reported are pyridine carboxamides [nicotinamide (NAM), isonicotinamide (INA), and picolinamide (PAM)], caprolactam (CPR),p-aminobenzoic acid (PABA), and piperazine (PPZ). The structures of an ACM–INA cocrystal and a binary adduct ACM–PABA were solved using single-crystal X-ray diffraction. Other ACM cocrystals, ACM–PAM and ACM–CPR, and the piperazine salt ACM–PPZ were solved from high-resolution powder X-ray diffraction data. The ACM–INA cocrystal is sustained by the acid...pyridine heterosynthon and N—H...O catemer hydrogen bonds involving the amide group. The acid...amide heterosynthon is present in the ACM–PAM cocrystal, while ACM–CPR contains carboxamide dimers of caprolactam along with acid–carbonyl (ACM) hydrogen bonds. The cocrystals ACM–INA, ACM–PAM and ACM–CPR are three-dimensional isostructural. The carboxyl...carboxyl synthon in ACM–PABA posed difficulty in assigning the position of the H atom, which may indicate proton disorder. In terms of stability, the salts were found to be relatively stable in pH 7 buffer medium over 24 h, but the cocrystals dissociated to give ACM hydrate during the same time period. The ACM–PPZ salt and ACM–nicotinamide cocrystal dissolve five times faster than the stable hydrate form, whereas the ACM–PABA adduct has 2.5 times faster dissolution rate. The pharmaceutically acceptable piperazine salt of acemetacin exhibits superior stability, faster dissolution rate and is able to overcome the hydration tendency of the reference drug.


2017 ◽  
Vol 73 (8) ◽  
pp. 600-608 ◽  
Author(s):  
Karolina Schwendtner ◽  
Uwe Kolitsch

The crystal structures of hydrothermally synthesized aluminium dihydrogen arsenate(V) dihydrogen diarsenate(V), Al(H2AsO4)(H2As2O7), gallium dihydrogen arsenate(V) dihydrogen diarsenate(V), Ga(H2AsO4)(H2As2O7), and diindium bis[dihydrogen arsenate(V)] bis[dihydrogen diarsenate(V)], In2(H2AsO4)2(H2As2O7)2, were determined from single-crystal X-ray diffraction data collected at room temperature. The first two compounds are representatives of a novel sheet structure type, whereas the third compound crystallizes in a novel framework structure. In all three structures, the basic building units areM3+O6octahedra (M= Al, Ga, In) that are connectedviaone H2AsO4−and two H2As2O72−groups into chains, and furtherviaH2As2O72−groups into layers. In Al/Ga(H2AsO4)(H2As2O7), these layers are interconnected by weak-to-medium–strong hydrogen bonds. In In2(H2AsO4)2(H2As2O7)2, the H2As2O72−groups link the chains in three dimensions, thus creating a framework topology, which is reinforced by weak-to-medium–strong hydrogen bonds. The three title arsenates represent the first compounds containing both H2AsO4−and H2As2O72−groups.


2013 ◽  
Vol 634-638 ◽  
pp. 451-455
Author(s):  
Yan Yang ◽  
Liu Ting Yan ◽  
Rong Huan Qin ◽  
Wen Gui Duan

The lead(II) Complex constructed with 5-hydroxyisophthalic acid, [Pb3(5-hipa)2]n•4H2O(1), (5-hipa = 5-hydro- xyisophthalic acid) has been synthesized by hydrothermal methods and structurally characterized by elemental analysis, IR and X-ray single crystal diffraction. In trinuclear symmetrical complex 1, Pb1 is four-coordinated, Pb2 and Pb3 are three-coordinated by 5-nitroisophthalic acid groups, respectively, which is further connected through intermolecular hydrogen bonds resulting in a three-dimensional (3D) network.


2020 ◽  
Vol 76 (11) ◽  
pp. 1024-1033
Author(s):  
Fang-Hua Zhao ◽  
Shi-Yao Li ◽  
Wen-Yu Guo ◽  
Zi-Hao Zhao ◽  
Xiao-Wen Guo ◽  
...  

Two new CdII MOFs, namely, two-dimensional (2D) poly[[[μ2-1,4-bis(1H-benzimidazol-1-yl)butane](μ2-heptanedioato)cadmium(II)] tetrahydrate], {[Cd(C7H10O4)(C18H18N4)]·4H2O} n or {[Cd(Pim)(bbimb)]·4H2O} n (1), and 2D poly[diaqua[μ2-1,4-bis(1H-benzimidazol-1-yl)butane](μ4-decanedioato)(μ2-decanedioato)dicadmium(II)], [Cd2(C10H16O4)2(C18H18N4)(H2O)2] n or [Cd(Seb)(bbimb)0.5(H2O)] n (2), have been synthesized hydrothermally based on the 1,4-bis(1H-benzimidazol-1-yl)butane (bbimb) and pimelate (Pim2−, heptanedioate) or sebacate (Seb2−, decanedioate) ligands. Both MOFs were structurally characterized by single-crystal X-ray diffraction. In 1, the CdII centres are connected by bbimb and Pim2− ligands to generate a 2D sql layer structure with an octameric (H2O)8 water cluster. The 2D layers are further connected by O—H...O hydrogen bonds, resulting in a three-dimensional (3D) supramolecular structure. In 2, the CdII centres are coordinated by Seb2− ligands to form binuclear Cd2 units which are linked by bbimb and Seb2− ligands into a 2D hxl layer. The 2D layers are further connected by O—H...O hydrogen bonds, leading to an 8-connected 3D hex supramolecular network. IR and UV–Vis spectroscopy, thermogravimetric analysis and solid-state photoluminescence analysis were carried out on both MOFs. Luminescence sensing experiments reveal that both MOFs have good selective sensing towards Fe3+ in aqueous solution.


2019 ◽  
Vol 75 (8) ◽  
pp. 1073-1083 ◽  
Author(s):  
Feng Su ◽  
Cheng-Yong Zhou ◽  
Lin-Tao Wu ◽  
Xi Wu ◽  
Jing Su ◽  
...  

Two CoII-based coordination polymers, namely poly[(μ4-biphenyl-2,2′,5,5′-tetracarboxylato){μ2-1,3-bis[(1H-imidazol-1-yl)methyl]benzene}dicobalt(II)], [Co2(C16H6O8)(C14H14N4)2] n or [Co2(o,m-bpta)(1,3-bimb)2] n (I), and poly[[aqua(μ4-biphenyl-2,2′,5,5′-tetracarboxylato){1,4-bis[(1H-imidazol-1-yl)methyl]benzene}dicobalt(II)] dihydrate], {[Co2(C16H6O8)(C14H14N4)2(H2O)2]·4H2O} n or {[Co2(o,m-bpta)(1,4-bimb)2(H2O)2]·4H2O} n (II), were synthesized from a mixture of biphenyl-2,2′,5,5′-tetracarboxylic acid, i.e. [H4(o,m-bpta)], CoCl2·6H2O and N-donor ligands under solvothermal conditions. The complexes were characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction and powder X-ray diffraction analysis. The bridging (o,m-bpta)4− ligands combine with CoII ions in different μ4-coordination modes, leading to the formation of one-dimensional chains. The central CoII atoms display tetrahedral [CoN2O2] and octahedral [CoN2O4] geometries in I and II, respectively. The bis[(1H-imidazol-1-yl)methyl]benzene (bimb) ligands adopt trans or cis conformations to connect CoII ions, thus forming two three-dimensional (3D) networks. Complex I shows a (2,4)-connected 3D network with left- and right-handed helical chains constructed by (o,m-bpta)4− ligands. Complex II is a (4,4)-connected 3D novel network with ribbon-like chains formed by (o,m-bpta)4− linkers. Magnetic studies indicate an orbital contribution to the magnetic moment of I and II due to the longer Co...Co distances. An attempt has been made to fit the χM T results to the magnetic formulae for mononuclear CoII complexes, the fitting indicating the presence of weak antiferromagnetic interactions between the CoII ions.


2014 ◽  
Vol 70 (6) ◽  
pp. 562-565 ◽  
Author(s):  
Wei Zhang ◽  
Yu-Quan Feng

A novel dinuclear bismuth(III) coordination compound, [Bi2(C7H3NO4)2(N3)2(C12H8N2)2]·4H2O, has been synthesized by an ionothermal method and characterized by elemental analysis, energy-dispersive X-ray spectroscopy, IR, X-ray photoelectron spectroscopy and single-crystal X-ray diffraction. The molecular structure consists of one centrosymmetric dinuclear neutral fragment and four water molecules. Within the dinuclear fragment, each BiIIIcentre is seven-coordinated by three O atoms and four N atoms. The coordination geometry of each BiIIIatom is distorted pentagonal–bipyramidal (BiO3N4), with one azide N atom and one bridging carboxylate O atom located in axial positions. The carboxylate O atoms and water molecules are assembledviaO—H...O hydrogen bonds, resulting in the formation of a three-dimensional supramolecular structure. Two types of π–π stacking interactions are found, with centroid-to-centroid distances of 3.461 (4) and 3.641 (4) Å.


2012 ◽  
Vol 531-532 ◽  
pp. 409-412
Author(s):  
Hai Xing Liu ◽  
Fang Fang Jian ◽  
Jing Wang ◽  
Guang Zeng ◽  
Hui Juan Yue ◽  
...  

Numerous stable complexes of boric acid with polyhydroxy compounds, including tartaric, salicylic, citric, malic, and other acids, are known. The structure of some compounds contains polyanion. In this paper, a novel potassium borate hydrate [K(H4B5O10) •2(H2O)] has been synthesized from a solution reaction and the crystal structure has been determined by means of single-crystal X-ray diffraction. Orthorhombic, Aba2. a = 11.0781(14) Å b = 11.1780(15) Å c = 9.0508(11) Å α=β=γ=90°. V= 1120.8(2) Å3. Z=4. Rgt = 0.0244, wRref = 0.0623. T= 298 K. The crystal packing is stabilized by O-H...O hydrogen bonds interaction and three dimensional framwork structure is formed. The work is originality and has a new crystallographic structure shape.


Sign in / Sign up

Export Citation Format

Share Document