Tolerance factor and phase stability of the garnet structure

2019 ◽  
Vol 75 (10) ◽  
pp. 1353-1358 ◽  
Author(s):  
Zhen Song ◽  
Dandan Zhou ◽  
Quanlin Liu

We introduce a structural descriptor, the tolerance factor, for the prediction and systematic description of the phase stability with the garnet structure. Like the tolerance factor widely adopted for the perovskite structure, it is a compositional parameter derived from the geometrical relationship between multi-type polyhedra in the garnet structure, and the calculation only needs the information of the ionic radius. A survey of the tolerance factor over 130 garnet-type compounds reveals that the data points are scattered in a narrow range. The tolerance factor is helpful in understanding the crystal chemistry of some garnet-type compounds and could serve as a guide for predicting the stability of the garnet phase. The correlation between the tolerance factor and the garnet-phase stability could be utilized by machine learning or high-throughput screening methods in material design and discovery.

2020 ◽  
Vol 76 (3) ◽  
pp. 311-311
Author(s):  
Zhen Song ◽  
Dandan Zhou ◽  
Quanlin Liu

An error in an equation in the paper by Song et al. [Acta Cryst. (2019), C75, 1353–1358] is corrected.


2005 ◽  
Vol 10 (6) ◽  
pp. 624-631 ◽  
Author(s):  
Miguel Alcalde ◽  
Thomas Bulter ◽  
Miren Zumárraga ◽  
Humberto García-Arellano ◽  
Mario Mencía ◽  
...  

Reliable screening methods are being demanded by biocatalysts’ engineers, especially when some features such as activity or stability are targets to improve under nonnatural conditions (i.e., in the presence of organic solvents). The current work describes a protocol for the design of a fungal laccase—expressed in Saccharomyces cerevisiae—highly active in organic cosolvents. A high-throughput screening assay based on ABTS (2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)) oxidation was validated. The stability of the ABTS radical cation was not significantly altered in the presence of acetonitrile, ethanol, or DMSO. With a coefficient of variance below 10% and a sensitivity limit of 15 pg laccase/μL, the assay was reproducible and sensitive. The expression system of Myceliophthora thermophila laccase variant T2 in S. cerevisiae was highly dependent on the presence of Cu2+. Copper concentration was limited up to 10 μM CuSO4 where expression levels (~14-18 mg/L) were acceptable without compromising the reliability of the assay. A mutant library was created by error-prone PCR with 1.1 to 3.5 mutations per kb. After only 1 generation of directed evolution, mutant 6C9 displayed about 3.5-fold higher activities than parent type in the presence of 20% acetonitrile or 30% ethanol. The method provided here should be generally useful to improve the activity of other redox enzymes in mixtures of water/cosolvents.


2020 ◽  
Vol 8 (44) ◽  
pp. 15852-15859
Author(s):  
Jiu Chen ◽  
Fuhua Li ◽  
Yurong Tang ◽  
Qing Tang

Chemical functionalization can significantly improve the stability of meta-stable 1T′-MoS2 and tune the surface HER activity.


2016 ◽  
Vol 19 (8) ◽  
pp. 616-626 ◽  
Author(s):  
Lorena Ramírez-Velasco ◽  
Mariana Armendáriz-Ruiz ◽  
Jorge Alberto Rodríguez-González ◽  
Marcelo Müller-Santos ◽  
Ali Asaff-Torres ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Aliaksei Vasilevich ◽  
Aurélie Carlier ◽  
David A. Winkler ◽  
Shantanu Singh ◽  
Jan de Boer

AbstractNatural evolution tackles optimization by producing many genetic variants and exposing these variants to selective pressure, resulting in the survival of the fittest. We use high throughput screening of large libraries of materials with differing surface topographies to probe the interactions of implantable device coatings with cells and tissues. However, the vast size of possible parameter design space precludes a brute force approach to screening all topographical possibilities. Here, we took inspiration from Nature to optimize materials surface topographies using evolutionary algorithms. We show that successive cycles of material design, production, fitness assessment, selection, and mutation results in optimization of biomaterials designs. Starting from a small selection of topographically designed surfaces that upregulate expression of an osteogenic marker, we used genetic crossover and random mutagenesis to generate new generations of topographies.


Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 108
Author(s):  
Shengzhang Dong ◽  
George Dimopoulos

Mosquito-borne arthropod-borne viruses (arboviruses) such as the dengue virus (DENV), Zika virus (ZIKV), and chikungunya virus (CHIKV) are important human pathogens that are responsible for significant global morbidity and mortality. The recent emergence and re-emergence of mosquito-borne viral diseases (MBVDs) highlight the urgent need for safe and effective vaccines, therapeutics, and vector-control approaches to prevent MBVD outbreaks. In nature, arboviruses circulate between vertebrate hosts and arthropod vectors; therefore, disrupting the virus lifecycle in mosquitoes is a major approach for combating MBVDs. Several strategies were proposed to render mosquitoes that are refractory to arboviral infection, for example, those involving the generation of genetically modified mosquitoes or infection with the symbiotic bacterium Wolbachia. Due to the recent development of high-throughput screening methods, an increasing number of drugs with inhibitory effects on mosquito-borne arboviruses in mammalian cells were identified. These antivirals are useful resources that can impede the circulation of arboviruses between arthropods and humans by either rendering viruses more vulnerable in humans or suppressing viral infection by reducing the expression of host factors in mosquitoes. In this review, we summarize recent advances in small-molecule antiarboviral drugs in mammalian and mosquito cells, and discuss how to use these antivirals to block the transmission of MBVDs.


1998 ◽  
Vol 525 ◽  
Author(s):  
B. Tillack ◽  
D. Bolze ◽  
G. Fischer ◽  
G. Kissinger ◽  
D. Knoll ◽  
...  

ABSTRACTWe have determined the process capability of Low Pressure (Rapid Thermal) Chemical Vapor Deposition (LP(RT)CVD) of epitaxial Si/SiGe/Si stacks for heterojunction bipolar transistors (HIBTs). The transistor parameters primarily influenced by the epitaxial characteristics were measured for 600 identically processed 4” wafers. The results demonstrate that it is possible to control accurately the epitaxial process for a 25 nm thick graded SiGe base profile with 20 % Ge and very narrow B doping (5 nm). The pipe limited device yield of about 90 % for an emitter area of 104 μm2 indicates a very low defect density in the epitaxial layer stack. The process capability indices determined from about 40,000 data points demonstrate the stability and capability of the LP(RT)CVD epitaxy with regard to manufacturing requirements.


Geophysics ◽  
1999 ◽  
Vol 64 (2) ◽  
pp. 443-451 ◽  
Author(s):  
Maurizio Fedi ◽  
Antonio Rapolla ◽  
Guido Russo

Numerous methods have been used for upward continuation, but most of them require data on a regular grid. Gridding can introduce errors that affect the continued data in an unpredictable way. To avoid this problem, we design a continuation operator used for the direct continuation of scattered data on a 3-D basis. In this approach a harmonic function, satisfying the constraints imposed by the measured data, is developed. The continuation is written in the form of a linear combination of the measured data, but it depends on the arbitrary choice of the topographic zero level. However, the coefficients of the linear combination depend only on the position of the data points. This allows the zero level to be estimated on the basis of the continuation of synthetic anomalies calculated between the starting and ending surface. An important feature of the method is its local character, which allows the reduction of computation time. Also, the stability of the method for noisy data is reasonably good. The method is applied to both synthetic and real cases. Synthetic examples show how gridding‐related errors may affect the continuation when an irregular distribution of data points and a variable topography are considered.


Sign in / Sign up

Export Citation Format

Share Document