Diversity of N-triphenylacetyl-L-tyrosine solvates with halogenated solvents

Author(s):  
Agnieszka Czapik ◽  
Marcin Kwit

The structure of N-triphenylacetyl-L-tyrosine (C29H25NO4, L-TrCOTyr) is characterized by the presence of both donors and acceptors of classical hydrogen bonds. At the same time, the molecule contains a sterically demanding and hydrophobic trityl group capable of participating in π-electron interactions. Due to its large volume, the trityl group may favour the formation of structural voids in the crystals, which can be filled with guest molecules. In this article, we present the crystal structures of a series of N-triphenylacetyl-L-tyrosine solvates with chloroform, namely, L-TrCOTyr·CHCl3 (I) and L-TrCOTyr·1.5CHCl3 (III), and dichloromethane, namely, L-TrCOTyr·CH2Cl2 (II) and L-TrCOTyr·0.1CH2Cl2 (IV). To complement the topic, we also decided to use the racemic amide N-triphenylacetyl-DL-tyrosine (rac-TrCOTyr) and recrystallized it from a mixture of chloroform and dichloromethane. As a result, rac-TrCOTyr·1.5CHCl3 (V) was obtained. In the crystal structures, the amide molecules interact with each other via O—H...O hydrogen bonds. Noticeably, the amide N—H group does not participate in the formation of intermolecular hydrogen bonds. Channels are formed between the TrCOTyr molecules and these are filled with solvent molecules. Additionally, in the crystals of III and V, there are structural voids that are occupied by chloroform molecules. Structure analysis has shown that solvates I and II are isostructural. Upon loss of solvent, the solvates transform into the solvent-free form of TrCOTyr, as confirmed by thermogravimetric analysis, differential scanning calorimetry and powder X-ray diffraction.

Author(s):  
Srinivasulu Aitipamula ◽  
Pui Shan Chow ◽  
Reginald B. H. Tan

Four solvates of an antifungal drug, griseofulvin (GF), were discovered. All the solvates were characterized by differential scanning calorimetry, thermogravimetric analysis, and their crystal structures were determined by single-crystal X-ray diffraction. The solvents that form the solvates are acetonitrile, nitromethane and nitroethane (2:1 and 1:1). It was found that all the solvates lose the solvent molecules from the crystal lattice between 343 and 383 K, and that the melting point of the desolvated materials matched the melting point of the solvent-free GF (493 K). The conformation of the GF molecule in solvent-free form was found to be significantly different from the conformations found in the solvates. Solution stability studies revealed that the GF–acetonitrile solvate transforms to GF and that GF–nitroethane (1:1) solvate transforms to GF–nitroethane (2:1) solvate. On the other hand, GF–nitromethane and GF–nitroethane (2:1) solvates were found to be stable in solution. Our results highlight the importance of the co-crystallization technique in the pharmaceutical drug development; it not only expands the solid form diversity but also creates new avenues for unraveling novel solvates.


1996 ◽  
Vol 51 (6) ◽  
pp. 869-878 ◽  
Author(s):  
Ralf Feldhaus ◽  
Jens Köppe ◽  
Rainer Mattes

Abstract The synthesis and structural characterisation of complexes of the 14-membered macrocyclic trans-N4 dibenzo ligand 5,6,7,8,9,14.15,16,17,18-decahydrodibenzo[e,l][1,4, 8,11]-tetraazacyclotetradecine (L2) is described. The crystal structures of six compounds were determined by single crystal X-ray diffraction. The free ligand L2 has a saddle-shaped structure with short intramolecular hydrogen bonds. The N-N distances are 289 pm. The diprotonated species [H2L2]2+ has a different conformation due to intra- and intermolecular hydrogen bonds. The ligand is folded along an N-N axis in c/s-[Ni(L2)(H2O)2]2+, but displays a saddleshaped structure in the Cu(II), Zn(II) and Pd(II) complexes with a more or less planar arrangement of the four N donor atoms. The metal atoms are incorporated within the macrocyclic cavity in [Cu(L2)(CF3SO3)]+ and [Pd(L2)]2+. The metal-to-nitrogen bond lengths herein are rather small. Zn(II) is five-coordinate in [Zn(L2)(Cl)]+. The coordination polyhedron is intermediate between a trigonal bipyramid and a square pyramid. In all complexes the metalto- ligand distances originating at the nitrogen atoms in β-position (with respect to the aromatic ring) are significantly shorter then the donor bonds of the ‘anilinic’ N atoms


1997 ◽  
Vol 53 (2) ◽  
pp. 300-305 ◽  
Author(s):  
T. Y. Fu ◽  
J. R. Scheffer ◽  
J. Trotter

Crystal structures have been determined for inclusion complexes of the host molecule 9,10-dihydro-9,10-ethenoanthracene-11,12-bis(diphenylmethanol), with acetone, ethanol and toluene as guest solvent molecules. The host molecule exhibits an intramolecular O--H...O hydrogen bond in each of the complexes, with intermolecular hydrogen bonds to the acetone and ethanol guests. Different photoproducts are obtained from solution and solid-state photolyses; the solid-state reaction involves a relatively small amount of molecular rearrangement, for which a mechanism is proposed.


Author(s):  
Mateusz Gołdyn ◽  
Anna Komasa ◽  
Mateusz Pawlaczyk ◽  
Aneta Lewandowska ◽  
Elżbieta Bartoszak-Adamska

The study of various forms of pharmaceutical substances with specific physicochemical properties suitable for putting them on the market is one of the elements of research in the pharmaceutical industry. A large proportion of active pharmaceutical ingredients (APIs) occur in the salt form. The use of an acidic coformer with a given structure and a suitable pK a value towards purine alkaloids containing a basic imidazole N atom can lead to salt formation. In this work, 2,6-dihydroxybenzoic acid (26DHBA) was used for cocrystallization of theobromine (TBR) and caffeine (CAF). Two novel salts, namely, theobrominium 2,6-dihydroxybenzoate, C7H9N4O2 +·C7H5O4 − (I), and caffeinium 2,6-dihydroxybenzoate, C8H11N4O2 +·C7H5O4 − (II), were synthesized. Both salts were obtained independently by slow evaporation from solution, by neat grinding and also by microwave-assisted slurry cocrystallization. Powder X-ray diffraction measurements proved the formation of the new substances. Single-crystal X-ray diffraction studies confirmed proton transfer between the given alkaloid and 26DHBA, and the formation of N—H...O hydrogen bonds in both I and II. Unlike the caffeine cations in II, the theobromine cations in I are paired by noncovalent N—H...O=C interactions and a cyclic array is observed. As expected, the two hydroxy groups in the 26DHBA anion in both salts are involved in two intramolecular O—H...O hydrogen bonds. C—H...O and π–π interactions further stabilize the crystal structures of both compounds. Steady-state UV–Vis spectroscopy showed changes in the water solubility of xanthines after ionizable complex formation. The obtained salts I and II were also characterized by theoretical calculations, Fourier-transform IR spectroscopy (FT–IR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and elemental analysis.


1982 ◽  
Vol 37 (11) ◽  
pp. 1393-1401 ◽  
Author(s):  
Beatrix Milewski-Mahrla ◽  
Hubert Schmidbaur

Reactions of pentamethylantimony (CH3)5Sb with carboxylic acids in the molar ratio 1:2 afford one equivalent of methane and essentially quantitative yields of crystalline tetramothylstibonium hydrogendicarboxylates. Six new compounds of this series have been synthesized using benzoic, o-phthalic, salicylic, 4-ethoxy-salicylic, oxalic, and malic acid, and characterized by analytical and spectroscopic data. An ionic structure with strong hydrogen bonds in the anionic components is proposed.The crystal structures of the hydrogen-dibenzoato (1), hydrogen-ortho-plithalato (2) and 4-ethoxy-hydrogen-salicylate (3) were determined by single crystal X-ray diffraction. The compounds can be described as having ionic lattices with some donor-acceptor inter­actions between the stibonium centers and the carboxylate oxygen atoms. The anions are characterized by strong hydrogen bonds O...H...O. Thus, the (CH3)4Sb-tetrahedron in 1 is distorted by two benzoate oxygon atoms (at 304(2) and 340(2) pin). The cation in 2 is largely undistorted and the anion has a hydrogenphthalate hydrogen bond of d(O...H...O) = 232 pm. The cation-anion contact in 3 is as short as d(Sb-O) = 289 pm rendering the Sb atom pentacoordinate.


2000 ◽  
Vol 55 (8) ◽  
pp. 677-684 ◽  
Author(s):  
Maciej Kubicki ◽  
Teresa Borowiak ◽  
Wiesław Z. Antkowiak

Abstract The tendency of forming mixed carboxyl-to-oxime hydrogen bonds was tested on the series of bornane derivatives: one with the acid function only (bornane-2-endo-carboxylic acid), one with the oxime function (2,2′-diethylthiobomane-3-oxime), and one with both oxime and carboxylic functions (bornane-2-oxime-3-endo-carboxylic acid). The crystal structures of these compounds were determined by means of X-ray diffraction. In bornane-2-endo-carboxylic acid and 2,2′-diethylthiobornane-3-oxime 'homogenic' hydrogen bonds were found, and these hydrogen bonds close eight-and six-membered rings, respectively. By contrast, in bornane-2-oxime-3-endo-carboxylic acid 'heterogenic' hydrogen bonds between carboxylic and oxime bonds were found. This carboxylic-oxime, or 'carboxyoxime' system is almost always present in compounds which have both oxime and carboxylic groups; therefore it can be regarded as an element of supramolecular structures (synthon). The presence of such synthons can break the tendency of carboxylic acids and oximes towards crystallizing in centrosymmetric structures.


2019 ◽  
Vol 234 (1) ◽  
pp. 59-71 ◽  
Author(s):  
Ligia R. Gomes ◽  
John N. Low ◽  
Nathasha R. de L. Correira ◽  
Thais C.M. Noguiera ◽  
Alessandra C. Pinheiro ◽  
...  

Abstract The crystal structures of four azines, namely 1-3-bis(4-methoxyphenyl)-2,3-diaza-1,4-butadiene, 1, 1,3-bis(2,3-dimethoxyphenyl)-2,3-diaza-1,4-butadiene, 2, 1,3-bis(2-hydroxy-3-methoxyphenyl)-2,3-diaza-1,4-butadiene, 3, and 1,3-bis(2-hydroxy-4-methoxyphenyl)-2,3-diaza-1,4-butadiene, 4, are reported. Molecules of 3 and 4, and both independent molecules of 2, Mol A and Mol B, possess inversion centers. The central C=N–N=C units in each molecule is planar with an (E,E) conformation. The intermolecular interactions found in the four compounds are C–H···O, C–H–N, C–H---π and π---π interactions. However, there is no consistent set of intermolecular interactions for the four compounds. Compound, 1, has a two-dimensional undulating sheet structure, generated from C–H···O and C–H···N intermolecular hydrogen bonds. The only recognized intermolecular interaction in 2 is a C–H···O hydrogen bond, which results in a zig-zag chain of alternating molecules, Mol A and Mol B. While 3 forms a puckered sheet of molecules, solely via C–H···π interactions, its isomeric compound, 4, has a more elaborate three-dimensional structure generated from a combination of C–H···O hydrogen bonds, C–H···π and π···π interactions. The findings in this study, based on both PLATON and Hirshfeld approaches, for the four representative compounds match well the reported structural findings in the literature of related compounds, which are based solely on geometric parameters.


2018 ◽  
Vol 233 (9-10) ◽  
pp. 745-752
Author(s):  
Peter Herich ◽  
Lenka Kucková ◽  
Jan Moncol ◽  
Jozef Kožíšek

Abstract An experimental electronic structure of bis(clonixato)bis(ethanol) bis(imidazole)copper(II) complex, [Cu(cln)2(im)2(EtOH)2] (cln=clonixato, im=imidazole) (1) has been obtained from single-crystal X-ray diffraction data collected at 100 K using an Incoatec IμS Ag microfocus source. Metal-ligand (ML) bonds and hydrogen bonds (HBs) have been analysed using topological analysis of the experimental electron density with the atoms in molecules (AIM) approach. The central copper atom is octahedrally coordinated by two oxygen atoms from two clonixato anions and two nitrogen atoms from two imidazole ligands in equatorial plane. In axial positions are two oxygen atoms from two ethanol molecules. AIM analysis establishes that the central copper atom is bonded more strongly to the clonixato anion that to the imidazole or ethanol molecules. AIM analysis of two intramolecular and one intermolecular hydrogen bonds permits to estimate their strength. We show that the hydrogen bonds are strong enough to protect the molecule from decomposition in solvent media and to disable the more reactive imidazole-Cu-clonixato complex from interacting with e.g. a macromolecule. The electrostatic potential of the complex shows a highly positive value on the central atom, so the complex is highly reactive in an interaction with negative ligands.


1999 ◽  
Vol 52 (3) ◽  
pp. 219 ◽  
Author(s):  
Philip A. Reynolds ◽  
Brian N. Figgis ◽  
Alexander N. Sobolev

The crystal structures of KOs(NH3)3(ClO4)2Cl2 and KCr(NH3)6(ClO4)2Cl2 were determined at 10 K by X-ray diffraction, and for the osmium salt also at 293 K. At 293 K the osmium salt is trigonal, space group R 3m, with the same simple structure as others of this class of double salt. At 10 K, in agreement with previous radius ratio predictions, both crystals are best described as remaining R 3m. All previously studied members, with larger alkali metal cations, are twinned R 3 at low temperatures, with small, symmetry-breaking rotations of the hexaamminemetal(III) and perchlorate ions about the threefold axis. Differential scanning calorimetry on CsRu(NH3)6(ClO4)2Cl2 suggests that the R 3m to R 3 change is very extended in temperature with only a small discontinuity at the transition temperature.


2019 ◽  
Vol 48 (35) ◽  
pp. 13378-13387 ◽  
Author(s):  
Constance Lecourt ◽  
Warren Madanamoothoo ◽  
Vivian Ferreol ◽  
Nicolas Bélanger-Desmarais ◽  
Lhoussain Khrouz ◽  
...  

One-electron transfer from Mn(ii) ions to an imino nitroxide radical gives mononuclear Mn(iii) complexes of the reduced amino imine-oxide form for which crystal structures evidence hydrogen bonds networks acting as a stabilizing driving-force.


Sign in / Sign up

Export Citation Format

Share Document