scholarly journals Identification and characterization of two drug-like fragments that bind to the same cryptic binding pocket of Burkholderia pseudomallei DsbA

Author(s):  
Guillaume A. Petit ◽  
Biswaranjan Mohanty ◽  
Róisín M. McMahon ◽  
Stefan Nebl ◽  
David H. Hilko ◽  
...  

Disulfide-bond-forming proteins (Dsbs) play a crucial role in the pathogenicity of many Gram-negative bacteria. Disulfide-bond-forming protein A (DsbA) catalyzes the formation of the disulfide bonds necessary for the activity and stability of multiple substrate proteins, including many virulence factors. Hence, DsbA is an attractive target for the development of new drugs to combat bacterial infections. Here, two fragments, bromophenoxy propanamide (1) and 4-methoxy-N-phenylbenzenesulfonamide (2), were identified that bind to DsbA from the pathogenic bacterium Burkholderia pseudomallei, the causative agent of melioidosis. The crystal structures of oxidized B. pseudomallei DsbA (termed BpsDsbA) co-crystallized with 1 or 2 show that both fragments bind to a hydrophobic pocket that is formed by a change in the side-chain orientation of Tyr110. This conformational change opens a `cryptic' pocket that is not evident in the apoprotein structure. This binding location was supported by 2D-NMR studies, which identified a chemical shift perturbation of the Tyr110 backbone amide resonance of more than 0.05 p.p.m. upon the addition of 2 mM fragment 1 and of more than 0.04 p.p.m. upon the addition of 1 mM fragment 2. Although binding was detected by both X-ray crystallography and NMR, the binding affinity (K d) for both fragments was low (above 2 mM), suggesting weak interactions with BpsDsbA. This conclusion is also supported by the crystal structure models, which ascribe partial occupancy to the ligands in the cryptic binding pocket. Small fragments such as 1 and 2 are not expected to have a high energetic binding affinity due to their relatively small surface area and the few functional groups that are available for intermolecular interactions. However, their simplicity makes them ideal for functionalization and optimization. The identification of the binding sites of 1 and 2 to BpsDsbA could provide a starting point for the development of more potent novel antimicrobial compounds that target DsbA and bacterial virulence.

2021 ◽  
Author(s):  
Guillaume A. Petit ◽  
Biswarajan Mohanty ◽  
Róisín M. McMahon ◽  
Stefan Nebl ◽  
David H. Hilko ◽  
...  

AbstractDiSulfide Bond forming proteins (DSB) play a crucial role in the pathogenicity of many Gram-negative bacteria. Disulfide bond protein A (DsbA) catalyzes the formation of disulfide bonds necessary for the activity and stability of multiple substrate proteins, including many virulence factors. Hence, DsbA is an attractive target for the development of new drugs to combat bacterial infections. Here, we identified two fragments - 1 (bromophenoxy propanamide) and 2 (4-methoxy-N-phenylbenzenesulfonamide), that bind to the DsbA from the pathogenic bacterium Burkholderia pseudomallei, the causative agent of melioidosis. Crystal structures of the oxidized B. pseudomallei DsbA (termed BpsDsbA) co-crystallized with 1 or 2 suggests that both fragments bind to a hydrophobic pocket that is formed by a change in the side chain orientation of tyrosine 110. This conformational change opens a “cryptic” pocket that is not evident in the apo-protein structure. This binding location was supported by 2D-NMR studies which identified a chemical shift perturbation of the tyrosine 110 backbone amide resonance of more than 0.05 ppm upon addition of 2 mM of fragment 1 and over 0.04 ppm upon addition of 1 mM of fragment 2. Although binding was detected by both X-ray crystallography and NMR, the binding affinity (KD) for both fragments was low (above 2 mM), suggesting weak interactions with BpsDsbA. This conclusion is also supported by the modelled crystal structures which ascribe partial occupancy to the ligands in the cryptic binding pocket. Small fragments such as 1 and 2 are not expected to have high binding affinity due to their size and the relatively small surface area that can be involved in intermolecular interactions. However, their simplicity makes them ideal for functionalization and optimization. Identification of the binding sites of 1 and 2 to BpsDsbA could provide a starting point for the development of more potent novel antimicrobial compounds that target DsbA and bacterial virulence.SynopsisDescribes the binding properties of two drug-like fragments to a conformationally dynamic site in the disulfide-bond forming protein A from Burkholderia pseudomallei.


2021 ◽  
Author(s):  
Sarfraz Ahmad ◽  
Iskandar Abdullah ◽  
Yean Kee Lee ◽  
Mamoona Nazir ◽  
Muhammad Usman Mirza ◽  
...  

<p>3CLpro is a vital protein for the SARS-CoV-2 replications and its inhibition using small molecules is a <i>bona fide</i> approach used to develop new drugs against the virus. In this study, a comprehensive crystallography-guided fragment-based drug discovery approach was employed to design new inhibitors for SARS-CoV-2 3CLpro. Protein Data Bank was explored to find small molecules cocrystallized with SARS-CoV-2 3CLpro. The fragments sitting in the binding pocket (87) were interactively coupled using various linkers with the intention to get molecules having the same orientation as those of the constituting fragments. In total, 1251 couples were prepared and converted to maximum possible stereoisomers using LigPrep for screening using Glide (standard precision and extra precision), AutoDock Vina, and Prime MMGBSA. Top 22 hits having conformations similar to their cocrystallized fragments were selected for MD simulation on Desmond. MD simulation suggested that 15 hits had conformations very close to their constituting fragments. Results indicated that these hits were computationally reliable and could be considered for further development. This suggests that the study could provide a benchmark starting point for the further design of SARS-CoV-2 3CLpro inhibitors with improved binding (data provided). <br></p>


2021 ◽  
Author(s):  
Sarfraz Ahmad ◽  
Iskandar Abdullah ◽  
Yean Kee Lee ◽  
Mamoona Nazir ◽  
Muhammad Usman Mirza ◽  
...  

<p>3CLpro is a vital protein for the SARS-CoV-2 replications and its inhibition using small molecules is a <i>bona fide</i> approach used to develop new drugs against the virus. In this study, a comprehensive crystallography-guided fragment-based drug discovery approach was employed to design new inhibitors for SARS-CoV-2 3CLpro. Protein Data Bank was explored to find small molecules cocrystallized with SARS-CoV-2 3CLpro. The fragments sitting in the binding pocket (87) were interactively coupled using various linkers with the intention to get molecules having the same orientation as those of the constituting fragments. In total, 1251 couples were prepared and converted to maximum possible stereoisomers using LigPrep for screening using Glide (standard precision and extra precision), AutoDock Vina, and Prime MMGBSA. Top 22 hits having conformations similar to their cocrystallized fragments were selected for MD simulation on Desmond. MD simulation suggested that 15 hits had conformations very close to their constituting fragments. Results indicated that these hits were computationally reliable and could be considered for further development. This suggests that the study could provide a benchmark starting point for the further design of SARS-CoV-2 3CLpro inhibitors with improved binding (data provided). <br></p>


2019 ◽  
Vol 476 (24) ◽  
pp. 3687-3704 ◽  
Author(s):  
Aphrodite T. Choumessi ◽  
Manuel Johanns ◽  
Claire Beaufay ◽  
Marie-France Herent ◽  
Vincent Stroobant ◽  
...  

Root extracts of a Cameroon medicinal plant, Dorstenia psilurus, were purified by screening for AMP-activated protein kinase (AMPK) activation in incubated mouse embryo fibroblasts (MEFs). Two isoprenylated flavones that activated AMPK were isolated. Compound 1 was identified as artelasticin by high-resolution electrospray ionization mass spectrometry and 2D-NMR while its structural isomer, compound 2, was isolated for the first time and differed only by the position of one double bond on one isoprenyl substituent. Treatment of MEFs with purified compound 1 or compound 2 led to rapid and robust AMPK activation at low micromolar concentrations and increased the intracellular AMP:ATP ratio. In oxygen consumption experiments on isolated rat liver mitochondria, compound 1 and compound 2 inhibited complex II of the electron transport chain and in freeze–thawed mitochondria succinate dehydrogenase was inhibited. In incubated rat skeletal muscles, both compounds activated AMPK and stimulated glucose uptake. Moreover, these effects were lost in muscles pre-incubated with AMPK inhibitor SBI-0206965, suggesting AMPK dependency. Incubation of mouse hepatocytes with compound 1 or compound 2 led to AMPK activation, but glucose production was decreased in hepatocytes from both wild-type and AMPKβ1−/− mice, suggesting that this effect was not AMPK-dependent. However, when administered intraperitoneally to high-fat diet-induced insulin-resistant mice, compound 1 and compound 2 had blood glucose-lowering effects. In addition, compound 1 and compound 2 reduced the viability of several human cancer cells in culture. The flavonoids we have identified could be a starting point for the development of new drugs to treat type 2 diabetes.


2018 ◽  
Vol 21 (2) ◽  
pp. 125-137
Author(s):  
Jolanta Stasiak ◽  
Marcin Koba ◽  
Marcin Gackowski ◽  
Tomasz Baczek

Aim and Objective: In this study, chemometric methods as correlation analysis, cluster analysis (CA), principal component analysis (PCA), and factor analysis (FA) have been used to reduce the number of chromatographic parameters (logk/logkw) and various (e.g., 0D, 1D, 2D, 3D) structural descriptors for three different groups of drugs, such as 12 analgesic drugs, 11 cardiovascular drugs and 36 “other” compounds and especially to choose the most important data of them. Material and Methods: All chemometric analyses have been carried out, graphically presented and also discussed for each group of drugs. At first, compounds’ structural and chromatographic parameters were correlated. The best results of correlation analysis were as follows: correlation coefficients like R = 0.93, R = 0.88, R = 0.91 for cardiac medications, analgesic drugs, and 36 “other” compounds, respectively. Next, part of molecular and HPLC experimental data from each group of drugs were submitted to FA/PCA and CA techniques. Results: Almost all results obtained by FA or PCA, and total data variance, from all analyzed parameters (experimental and calculated) were explained by first two/three factors: 84.28%, 76.38 %, 69.71% for cardiovascular drugs, for analgesic drugs and for 36 “other” compounds, respectively. Compounds clustering by CA method had similar characteristic as those obtained by FA/PCA. In our paper, statistical classification of mentioned drugs performed has been widely characterized and discussed in case of their molecular structure and pharmacological activity. Conclusion: Proposed QSAR strategy of reduced number of parameters could be useful starting point for further statistical analysis as well as support for designing new drugs and predicting their possible activity.


2020 ◽  
Vol 16 (6) ◽  
pp. 784-795
Author(s):  
Krisnna M.A. Alves ◽  
Fábio José Bonfim Cardoso ◽  
Kathia M. Honorio ◽  
Fábio A. de Molfetta

Background:: Leishmaniosis is a neglected tropical disease and glyceraldehyde 3- phosphate dehydrogenase (GAPDH) is a key enzyme in the design of new drugs to fight this disease. Objective:: The present study aimed to evaluate potential inhibitors of GAPDH enzyme found in Leishmania mexicana (L. mexicana). Methods: A search for novel antileishmanial molecules was carried out based on similarities from the pharmacophoric point of view related to the binding site of the crystallographic enzyme using the ZINCPharmer server. The molecules selected in this screening were subjected to molecular docking and molecular dynamics simulations. Results:: Consensual analysis of the docking energy values was performed, resulting in the selection of ten compounds. These ligand-receptor complexes were visually inspected in order to analyze the main interactions and subjected to toxicophoric evaluation, culminating in the selection of three compounds, which were subsequently submitted to molecular dynamics simulations. The docking results showed that the selected compounds interacted with GAPDH from L. mexicana, especially by hydrogen bonds with Cys166, Arg249, His194, Thr167, and Thr226. From the results obtained from molecular dynamics, it was observed that one of the loop regions, corresponding to the residues 195-222, can be related to the fitting of the substrate at the binding site, assisting in the positioning and the molecular recognition via residues responsible for the catalytic activity. Conclusion:: he use of molecular modeling techniques enabled the identification of promising compounds as inhibitors of the GAPDH enzyme from L. mexicana, and the results obtained here can serve as a starting point to design new and more effective compounds than those currently available.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2174 ◽  
Author(s):  
Annalisa Maruca ◽  
Delia Lanzillotta ◽  
Roberta Rocca ◽  
Antonio Lupia ◽  
Giosuè Costa ◽  
...  

Essential oils (EOs) are popular in aromatherapy, a branch of alternative medicine that claims their curative effects. Moreover, several studies reported EOs as potential anti-cancer agents by inducing apoptosis in different cancer cell models. In this study, we have considered EOs as a potential resource of new kinase inhibitors with a polypharmacological profile. On the other hand, computational methods offer the possibility to predict the theoretical activity profile of ligands, discovering dangerous off-targets and/or synergistic effects due to the potential multi-target action. With this aim, we performed a Structure-Based Virtual Screening (SBVS) against X-ray models of several protein kinases selected from the Protein Data Bank (PDB) by using a chemoinformatics database of EOs. By evaluating theoretical binding affinity, 13 molecules were detected among EOs as new potential kinase inhibitors with a multi-target profile. The two compounds with higher percentages in the EOs were studied more in depth by means Induced Fit Docking (IFD) protocol, in order to better predict their binding modes taking into account also structural changes in the receptor. Finally, given its good binding affinity towards five different kinases, cinnamyl cinnamate was biologically tested on different cell lines with the aim to verify the antiproliferative activity. Thus, this work represents a starting point for the optimization of the most promising EOs structure as kinase inhibitors with multi-target features.


2021 ◽  
Vol 22 (5) ◽  
pp. 2497
Author(s):  
Filippo Prencipe ◽  
Anna Zanfardino ◽  
Michela Di Napoli ◽  
Filomena Rossi ◽  
Stefano D’Errico ◽  
...  

The evolution of antibacterial resistance has arisen as the main downside in fighting bacterial infections pushing researchers to develop novel, more potent and multimodal alternative drugs.Silver and its complexes have long been used as antimicrobial agents in medicine due to the lack of silver resistance and the effectiveness at low concentration as well as to their low toxicities compared to the most commonly used antibiotics. N-Heterocyclic Carbenes (NHCs) have been extensively employed to coordinate transition metals mainly for catalytic chemistry. However, more recently, NHC ligands have been applied as carrier molecules for metals in anticancer applications. In the present study we selected from literature two NHC-carbene based on acridinescaffoldand detailed nonclassicalpyrazole derived mono NHC-Ag neutral and bis NHC-Ag cationic complexes. Their inhibitor effect on bacterial strains Gram-negative and positivewas evaluated. Imidazolium NHC silver complex containing the acridine chromophore showed effectiveness at extremely low MIC values. Although pyrazole NHC silver complexes are less active than the acridine NHC-silver, they represent the first example of this class of compounds with antimicrobial properties. Moreover all complexesare not toxic and they show not significant activity againstmammalian cells (Hek lines) after 4 and 24 h. Based on our experimental evidence, we are confident that this promising class of complexes could represent a valuable starting point for developing candidates for the treatment of bacterial infections, delivering great effectiveness and avoiding the development of resistance mechanisms.


Synthesis ◽  
2020 ◽  
Vol 52 (17) ◽  
pp. 2483-2496
Author(s):  
Johannes F. Teichert ◽  
Lea T. Brechmann

The key reactive intermediate of copper(I)-catalyzed alkyne semihydrogenations is a vinylcopper(I) complex. This intermediate can be exploited as a starting point for a variety of trapping reactions. In this manner, an alkyne semihydrogenation can be turned into a dihydrogen­-mediated coupling reaction. Therefore, the development of copper-catalyzed (transfer) hydrogenation reactions is closely intertwined with the corresponding reductive trapping reactions. This short review highlights and conceptualizes the results in this area so far, with H2-mediated carbon–carbon and carbon–heteroatom bond-forming reactions emerging under both a transfer hydrogenation setting as well as with the direct use of H2. In all cases, highly selective catalysts are required that give rise to atom-economic multicomponent coupling reactions with rapidly rising molecular complexity. The coupling reactions are put into perspective by presenting the corresponding (transfer) hydrogenation processes first.1 Introduction: H2-Mediated C–C Bond-Forming Reactions2 Accessing Copper(I) Hydride Complexes as Key Reagents for Coupling Reactions; Requirements for Successful Trapping Reactions 3 Homogeneous Copper-Catalyzed Transfer Hydrogenations4 Trapping of Reactive Intermediates of Alkyne Transfer Semi­hydrogenation Reactions: First Steps Towards Hydrogenative Alkyne Functionalizations 5 Copper(I)-Catalyzed Alkyne Semihydrogenations6 Copper(I)-Catalyzed H2-Mediated Alkyne Functionalizations; Trapping of Reactive Intermediates from Catalytic Hydrogenations6.1 A Detour: Copper(I)-Catalyzed Allylic Reductions, Catalytic Generation of Hydride Nucleophiles from H2 6.2 Trapping with Allylic Electrophiles: A Copper(I)-Catalyzed Hydro­allylation Reaction of Alkynes 6.3 Trapping with Aryl Iodides7 Conclusion


Sign in / Sign up

Export Citation Format

Share Document