Melting temperature depression of Sn‐0.4Co‐0.7Cu lead‐free solder nanoparticles

2009 ◽  
Vol 21 (2) ◽  
pp. 9-13 ◽  
Author(s):  
C.D. Zou ◽  
Y.L. Gao ◽  
B. Yang ◽  
Q.J. Zhai ◽  
C. Andersson ◽  
...  
2008 ◽  
Vol 38 (2) ◽  
pp. 351-355 ◽  
Author(s):  
Chang Dong Zou ◽  
Yu Lai Gao ◽  
Bin Yang ◽  
Xin Zhi Xia ◽  
Qi Jie Zhai ◽  
...  

2013 ◽  
Vol 795 ◽  
pp. 451-454
Author(s):  
M.A.A. Mohd Salleh ◽  
Flora Somidin ◽  
N.Z. Noriman ◽  
Khairel Rafezi Ahmad ◽  
Ramani Mayappan ◽  
...  

Composite approach in lead-free solder development was perceived as an expectation in finding new robust solder. Accordingly, Sn-0.7Cu/re-Al composite lead-free solder with varying amount of recycled-Aluminum (0, 3.0, 3.5 and 4.0 wt.% re-Al) particulates produced from aluminum beverage cans were successfully fabricated via powder metallurgy techniques in this study. This paper focuses on the thermal properties focusing on the melting temperature of the new developed Sn-0.7Cu/re-Al lead-free composite solder. The melting temperature (Tm) of the new solders was determined using differential scanning calorimetry (DSC). The melting temperature of the composite solders has showed comparable results with the monolithic solders of Sn-0.7Cu lead-free solder.


2009 ◽  
Vol 484 (1-2) ◽  
pp. 777-781 ◽  
Author(s):  
Yulai Gao ◽  
Changdong Zou ◽  
Bin Yang ◽  
Qijie Zhai ◽  
Johan Liu ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4443 ◽  
Author(s):  
Chaojun Li ◽  
Yanfu Yan ◽  
Tingting Gao ◽  
Guodong Xu

To obtain Sn-3.0Ag-0.5Cu-xSb (x = 0, 25, 28, and 31) high-temperature lead-free solder antimony was added to Sn-3.0Ag-0.5Cu solder. The microstructure, thermal properties, and mechanical behavior of the solder alloy prepared were studied by using JSM-5610LV scanning electron microscope, Germany STA409PC differential scanning calorimeter, AG-I250KN universal tensile testing machine, and other methods. The SEM-EDS results showed that after adding Sb, SnSb phase was formed in the β-Sn matrix phase. The newly formed SnSb phase and the existing Sb in the solder alloy can inhibit the generation of IMC and refine the IMC layer. The addition of Sb significantly increased the melting temperature of the solder alloy. Among them, the thermal performance of Sn-3.0Ag-0.5Cu-25Sb is the best. The melting temperature of Sn-3.0Ag-0.5Cu-25Sb is 332.91 °C and the solid–liquid line range of Sn-3.0Ag-0.5Cu-25Sb solder alloy is 313.28–342.02 °C. Its pasty range is 28.74 °C, lower than 30 °C, which is beneficial for soldering. The test results of the mechanical behavior of Sn-3.0Ag-0.5Cu-xSb solder alloy show that with the increase of Sb addition, the ultimate tensile strength of the solder alloy also increases. However, the change of the elongation of the solder alloy is the opposite. The ultimate tensile strength of the solder alloy increased from 29.45 MPa of Sn-3.0Ag-0.5Cu solder to 70.81 MPa of Sn-3.0Ag-0.5Cu-31Sb solder. The reason for the increase in the strength of the solder alloy is the reduction of the thickness of IMC and the solid solution hardening effect of Sb.


2020 ◽  
Vol 26 (4) ◽  
pp. 184-187
Author(s):  
Ngoc Binh Duong

Intermetallic compounds (IMCs) formation between lead-free solder alloys (Sn-9Zn and Sn-8Zn-3Bi) and Ni/Au surface finish copper substrate were studied. Reaction between the solder and the substrate was carried out at regular soldering temperature, approx. 50 °C above the melting temperature of the solder alloys. Results indicated that Au-Zn was the IMC formed at the interface and the Au layer which is electro-plated on the substrate has completely dissolved into the solder alloys. The amount of Au available at the interface is an important factor that influent the morphology of the IMC with thicker Au layer on the substrate resulted in thicker layer of IMC at the interface. Although Bi does not taken part in the composition of IMC, it influent the formation of IMC, the IMC formed in the Sn9Zn/substrate interface was Au5Zn3, meanwhile it was g2-AuZn3 in the Sn-8Zn-3Bi/substrate interface.


2011 ◽  
Vol 47 (1) ◽  
pp. 11-21 ◽  
Author(s):  
W. Chen ◽  
J. Kong ◽  
W.J. Chen

In this paper, in order to develop a low silver content lead-free solder with good overall properties, a newly designed solder alloys of Sn-0.3Ag-0.7Cu-20Bi-xCe type, with addition of varying amounts of rare earth Ce (0.05 mass%, 0.1 mass% and 0.2 mass%) were studied. The melting temperature of Sn-0.3Ag- 0.7Cu can be decreased substantially through addition of 20 mass% Bi; while the segregation of Bi element in the microstructure of the as-cast alloys can be relieved by micro-alloying with trace amount of rare earth Ce. Besides, aging treatments (160?C held for 6 h) of these solder alloys imply that appropriate amount of Ce addition can not only depress the diffusion induced aggregation of Bi in the microstructure but promote the homogenization during annealing. Compared with Bi-free Sn-0.3Ag-0.7Cu solder, Sn-0.3Ag-0.7Cu- 20Bi exhibits better wettability. More excitingly, the wetting property of Sn-0.3Ag-0.7Cu-20Bi can be further improved by doping little amounts of Ce, especially 0.5 mass%, in which case the spreading area of the solder can be increased to the largest extent. On the whole, the present study reveals that Sn-0.3Ag-0.7Cu- 20Bi-xCe (x=0.05-0.1) is a promising lead-free solder candidate considering the microstructure, melting temperature and wetting properties.


2015 ◽  
Vol 815 ◽  
pp. 109-114 ◽  
Author(s):  
Yuan Wang ◽  
Xiu Chen Zhao ◽  
Ying Liu ◽  
Jing Wei Cheng ◽  
Hong Li ◽  
...  

The research on a new low-Ag lead-free solder has become a hot spot in the field of electronic packaging. In this work, the effects of Bi addition on microstructure, melting temperature, wettability of low-Ag solder, shear strength of solder joint and the growth of interfacial intermetallic compound (IMC) before and after thermal cycling were investigated. A moderate amount of Bi element resulted in the microstructural refinement and melting temperature reduction of Sn-0.2Ag-0.7Cu solder. Wetting test results showed that a small amount of Bi produced the significant effect on improving the wettability. In addition, it is shown that the thickness of interfacial IMC during thermal cycling decreased first and then increased; the shear strength of solder joint increased with the increase of Bi.


2015 ◽  
Vol 10 (1) ◽  
pp. 2641-2648
Author(s):  
Rizk Mostafa Shalaby ◽  
Mohamed Munther ◽  
Abu-Bakr Al-Bidawi ◽  
Mustafa Kamal

The greatest advantage of Sn-Zn eutectic is its low melting point (198 oC) which is close to the melting point. of Sn-Pb eutectic solder (183 oC), as well as its low price per mass unit compared with Sn-Ag and Sn-Ag-Cu solders. In this paper, the effect of 0.0, 1.0, 2.0, 3.0, 4.0, and 5.0 wt. % Al as ternary additions on melting temperature, microstructure, microhardness and mechanical properties of the Sn-9Zn lead-free solders were investigated. It is shown that the alloying additions of Al at 4 wt. % to the Sn-Zn binary system lead to lower of the melting point to 195.72 ˚C.  From x-ray diffraction analysis, an aluminium phase, designated α-Al is detected for 4 and 5 wt. % Al compositions. The formation of an aluminium phase causes a pronounced increase in the electrical resistivity and microhardness. The ternary Sn-9Zn-2 wt.%Al exhibits micro hardness superior to Sn-9Zn binary alloy. The better Vickers hardness and melting points of the ternary alloy is attributed to solid solution effect, grain size refinement and precipitation of Al and Zn in the Sn matrix.  The Sn-9%Zn-4%Al alloy is a lead-free solder designed for possible drop-in replacement of Pb-Sn solders.  


Sign in / Sign up

Export Citation Format

Share Document