Corrosion inhibition studies of cigarette waste on the iron surface in acid medium: electrochemical and surface morphology analysis

2016 ◽  
Vol 63 (4) ◽  
pp. 245-255 ◽  
Author(s):  
Luis Manuel Becerra Lucatero ◽  
David Turcio Ortega ◽  
Thangarasu Pandiyan ◽  
Narinder Singh ◽  
Harpreet Singh ◽  
...  

Purpose The purpose of this paper is to study the corrosion inhibition tendency of cigarette waste (water extracts of cigarette butts, WECB) on an iron surface in an acid medium. Design/methodology/approach The electrochemical impedance spectroscopy and polarization techniques were used to analyze the performance of WECB on the iron working electrode. Electrochemical polarization curves were used to determine the intensity of the metal corrosion, specifically to see the effectiveness of the anodic and cathodic reactions in the corrosive medium having WECB. Moreover, the electrochemical impedance of WECB with electrode was analyzed qualitatively. The electrochemical data that relate isotherm adsorption of WECB with iron were analyzed; furthermore, the scanning electron microscope was used to analyze morphology change during the corrosion inhibition. Findings After analyzing the impedance data, it is seen that there exists a single capacitive semicircle at the higher frequency range corresponding to a one-time constant in the Bode-phase plot. In the polarization curves studies (Tafel slopes), the current densities of both cathodic and anodic branches are greatly affected in the presence of WECB in the corrosive medium, suggesting that WECB performs as a mixed inhibitor. The free energy data and Temkin adsorption isotherm process show that the adsorption process of WECB on the metal surface follows a physisorption. Furthermore, the WECB-coated metal surface analyzed by scanning electron microscopy confirms the corrosion inhibition of WECB in the acid medium. Research limitations/implications An in-depth characterization of the corroded scales is recommended to endorse the results of this study. Social implications There may be some people who may challenge that the research may encourage smoking; however, if taken positively, the research offers a very cost-effective and eco-friendly solution to tackle the cigarette waste. Originality/value Idea of the present work is to reuse the WECB as corrosion inhibitors for the metal surface, as this waste contains large amount of nicotine, which exhibits corrosion inhibition properties. The present work deals with the study of corrosion inhibition properties of WECB on the iron surface in acid medium. The findings of this study can be very useful from scientific, as well as industrial application point of view. Moreover, the research is important as there is no proper recycling process for this waste so as to maintain a clean environment.

2011 ◽  
Vol 306-307 ◽  
pp. 1545-1548
Author(s):  
Qi Zhao ◽  
Mei Shan Pei ◽  
Wen Juan Guo ◽  
Sheng Nian Wang

1-dodecyl-3-methyl imidazolium chloride ([C12mim]Cl) was adsorbed on iron surface to form an inhibitive film. The adlayer inhibited the metal corrosion in 0.2 M H2SO4 efficiently. The inhibitive effect of [C12mim]Cl was characterized by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). Impedance spectra demonstrated that the values of charge-transfer resistance increased when adding [C12mim]Cl into 0.2 M H2SO4. The inhibition efficiency increased with increasing the concentration of [C12mim]Cl. Scanning electron microscopy (SEM) analysis showed that the corrosion of iron surface had been inhibited by [C12mim]Cl.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amir Samadi ◽  
Reza Amini ◽  
Mehran Rostami ◽  
Pooneh Kardar ◽  
Michele Fedel

Purpose The purpose of this study was to evaluate the possibility of using conductive polymers such as polyaniline (PANI) as corrosion inhibitors for metals. Design/methodology/approach In this study, the effect of the addition of praseodymium (Pr3+) cations on the corrosion inhibition performance of PANI for AZ31 magnesium alloy was appraised through electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests. Findings The results of EIS and potentiodynamic polarization tests indicated the improvement of corrosion resistance of AZ31 during different immersion times. Research limitations/implications This anti-corrosion ability of PANI/Pr3+ composite applies as non-toxic environmentally friendly corrosion inhibitor on the self-healing corrosion protection properties. Practical implications The conductive polymers are interested for many industries. The reported data can be used by the formulators working in the R&D departments. Social implications The anti-corrosion ability of PANI/Pr3+ composite present a novel and high effective route against metal corrosion besides application of toxic corrosion. Originality/value The application of titanium dioxide coating in the field of architectural heritage is a great challenge. Therefore, the main objective of this study is to study the synthesis, characterization and corrosion inhibition performance of Pr3+ cations doped PANI nano-fibers as an anti-corrosion additive for AZ31 magnesium alloy in 3.5 Wt.% NaCl solution.


2019 ◽  
Vol 66 (1) ◽  
pp. 121-126 ◽  
Author(s):  
Walid Belmaghraoui ◽  
Aimad Mazkour ◽  
Hicham Harhar ◽  
Mourad Harir ◽  
Souad El Hajjaji

Purpose This study aims to investigate the corrosion inhibition effect of extracted oil from Ziziphus lotus fruit on corrosion of C38 carbon steel in 5.5 M H3PO4 solution using potentiodynamic polarization and impedance techniques. Design/methodology/approach Oil composition was determined using gas chromatography, and the results showed that oleic and palmitic acids present approximately 84.0 per cent of its total chemical content. Electrochemical impedance spectroscopy (EIS) data were analyzed by adapting it to a well-developed electric circuit model. The inhibition efficiency of Z. lotus oil was calculated and compared using Tafel polarization and EIS. Findings Accordingly, the oil extract was found to act as an anodic type inhibitor. Furthermore, inhibition efficiency of Z. lotus oil extract increase with oil concentrations and achieve approximately 70.5 per cent at 3 g/L solution of Z. lotus oil. Originality/value The results obtained from different tested methods were in line, and the oil was able to reduce significantly the kinetics of the corrosion process of C38 carbon steel.


2014 ◽  
Vol 61 (4) ◽  
pp. 241-249 ◽  
Author(s):  
Reena Kumari P.D. ◽  
Jagannath Nayak ◽  
A. Nityananda Shetty

Purpose – The purpose of this paper is to report the studies on the corrosion inhibition property of 4-amino-5-phenyl-4H-1,2,4-triazole-3-thiol (APTT) for the corrosion of 6061 Al-15 vol. pct. SiC(p) composite. Design/methodology/approach – The corrosion behavior of 6061 Al-15 vol. pct. SiC(p) composite was studied at different temperatures in 0.5-M sodium hydroxide (NaOH) solution in the presence of APTT by potentiodynamic polarization (PDP) and electrochemical impedance spectroscopic techniques. The effect of inhibitor concentration and temperature on the inhibitor effect of APTT was studied. The surface morphology of the metal surface was investigated by scanning electron microscopy. The activation parameters for the corrosion of the composite and base alloy, as well as the thermodynamic parameters for the adsorption of APTT on the composite and alloy surfaces, were calculated. Findings – The inhibition efficiency of APTT increases with the increase in the concentration of the inhibitor and decreases with the increase in temperature. The adsorption of APTT on the composite was found to be through physisorption, obeying Langmuir’s adsorption isotherm. APTT acts as a mixed inhibitor with predominant cathodic action on the composite. Practical implications – APTT can be used as an inhibitor for the corrosion of 6061 Al-15 vol. pct. SiC(p) composite in the NaOH medium. Originality/value – This paper provides information regarding the corrosion inhibition property of APTT on 6061 Al-15 vol. pct. SiC(p) composite. An attempt was made to explain the mechanism of the inhibition action by APTT.


2019 ◽  
Vol 66 (1) ◽  
pp. 1-10
Author(s):  
Juan Du ◽  
Yuning He ◽  
Pingli Liu ◽  
Yigang Liu ◽  
Xianghai Meng ◽  
...  

PurposeThis paper aims to analyze the corrosion and corrosion inhibition of N80 in 10 per cent HCl + 8 per cent fluoroboric acid (HBF4) solution for acidizing operation.Design/methodology/approachThe corrosion rate, kinetic parameters (Ea, A) and thermodynamic parameters (ΔH, ΔS) of N80 steel in fresh acid and spent acid, 10 per cent HCl + 8 per cent HBF4, 10 per cent HCl and 8 per cent HBF4solutions were calculated through immersion tests. The corrosion and inhibition properties were studied through X-ray diffraction and electrochemical measurements. The corrosion morphology of the corrosion product was examined by scanning electron microscopy (SEM).FindingsThe results demonstrated that the spent acid was the main cause of acidification corrosion, and the HBF4would cause serious corrosion to N80 steel. The results showed that the N80 steel was more seriously corroded in the spent acid than in fresh acid, and the hydrolysis of HBF4accelerates the dissolution process of N80 steel anode to control the corrosion reaction. The results showed that the acidification will definitely cause serious corrosion to the oil tube; therefore, necessary anti-corrosion measures must be taken in the acidification process.Originality/valueThe results showed that acidizing the formation with 10 per cent HCl + 8 per cent HBF4will definitely cause serious corrosion to the oil tube, especially when the spent acid flows back. Therefore, necessary anti-corrosion measures must be taken in the acidification process, especially in the spent acid flowback stage.


2015 ◽  
Vol 44 (6) ◽  
pp. 371-378 ◽  
Author(s):  
Y. Sangeetha ◽  
S. Meenakshi ◽  
C. Sairam Sundaram

Purpose – The purpose of this paper is to develop an eco-friendly corrosion inhibitor for mild steel in 1 M HCl. Design/methodology/approach – A pharmaceutical drug acetyl G was investigated for its corrosion inhibition efficiency using weight loss method, potentiodynamic polarisation and electrochemical impedance spectroscopy. Findings – The inhibition efficiency increased with increase in inhibitor concentration. Results from polarisation studies revealed mixed type of inhibition. Impedance studies, scanning electron microscopy and Fourier transform spectroscopy confirm the adsorption of inhibitor on the mild steel surface. Research limitations/implications – The drug acetyl G has sulphur and nitrogen atoms which effectively block the corrosion of mild steel and is non-toxic and has good inhibition efficiency. Practical implications – This method provides an excellent, non-toxic and cost-effective material as a corrosion inhibitor for mild steel in acid medium. Originality/value – Application of this drug as a corrosion inhibitor has not been reported yet in the literature. Replacing the organic inhibitors, this green inhibitor shows excellent inhibition efficiency. This is adsorbed excellently on the mild steel surface due to the presence of long chain and hetero atoms. Thus, the drug retards the corrosion reaction.


2018 ◽  
Vol 65 (2) ◽  
pp. 146-151 ◽  
Author(s):  
Mohd Rashid ◽  
Umesh S. Waware ◽  
Afidah A. Rahim ◽  
A.M.S. Hamouda

Purpose The purpose of this study is to compare the inhibitive effect of polyaniline (PAni) and N-cetyl-N,N,N trimethyl ammonium bromide (CTAB)-stabilized PAni in a hydrochloric acid (HCl) medium. Design/methodology/approach PAni has been deposited potentiodynamically on mild steel in the presence of CTAB as a stabilizing agent to achieve high corrosion inhibition performance by the polymer deposition. The corrosion inhibition studies of CTAB-stabilized PAni inhibitor in 0.1 M HCl acidic solution was carried out by electrochemical methods, namely, open-circuit potential, potentiodynamic polarization and electrochemical impedance spectroscopy technique. Findings The results of electrochemical studies have shown that the CTAB-stabilized PAni inhibitor has higher corrosion efficiency than PAni on mild steel in 0.1 M HCl solution. The maximum per cent efficiency evaluated using the potentiodynamic polarization method is approximately 91.9. Originality/value CTAB-stabilized PAni has never been studied as a corrosion inhibitor for mild steel in an acidic medium. The investigations demonstrate relatively the better corrosion inhibition efficiency and high dispersion of the polymer in the acidic medium.


2018 ◽  
Vol 65 (6) ◽  
pp. 658-667 ◽  
Author(s):  
Yingjun Zhang ◽  
Baojie Dou ◽  
Yawei Shao ◽  
Xue-Jun Cui ◽  
Yanqiu Wang ◽  
...  

Purpose This paper aim to investigate the influence of PA on the corrosion behavior of carbon steel with blast cleaned or pre-rusted treatments, and interpret the inhibition mechanism of PA on the steel with different surface treatments. Design/methodology/approach The influence of PA on the corrosion behavior of blast cleaned or rusty steel was investigated by means of electrochemical impedance spectroscopy (EIS). The EIS data were analyzed using the @ZsimpWin commercial software. The morphology and component of steel after immersion were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), Fourier transformation infrared (FTIR) and X-ray diffractometer (XRD). Findings EIS analysis results indicated that PA had good corrosion inhibition for blast cleaned or rusty steel. SEM, EDS, FTIR and XRD further indicated that PA had two main corrosion inhibition processes for the corrosion inhibition of blast cleaned or rusty steel: corrosion dissolution and formation of protective barrier layers. Originality/value Most published works focus the attention only toward the effect of corrosion inhibitor for the clean metal surfaces. However, the surface condition of metal sometimes is unsatisfactory in the practical application of corrosion inhibitor, such as existing residual rust. Some studies also have shown that several corrosion inhibitors could be applied on partially rusted substrates. These inhibitors mainly include tannins and phosphoric acid, but not PA. Therefore, the authors investigated the influence of PA on the corrosion behavior of carbon steel with blast cleaned or pre-rusted treatments in this paper.


2019 ◽  
Vol 43 (16) ◽  
pp. 6303-6313 ◽  
Author(s):  
Ambrish Singh ◽  
K. R. Ansari ◽  
M. A. Quraishi ◽  
Savas Kaya ◽  
Priyabrata Banerjee

The corrosion inhibition behavior of a naphthoxazinone derivative 1-phenyl-1,2-dihydronaphtho[1,2-e][1,3]oxazin-3-one (PNO) on J55 steel in 3.5 wt% NaCl solution saturated with carbon dioxide was evaluated using weight loss, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization.


2015 ◽  
Vol 76 (13) ◽  
Author(s):  
Bishir Usman ◽  
Hasmerya Maarof ◽  
Hassan H. Abdallah ◽  
Rosmahida Jamaludin ◽  
Mohamed Noor Hasan ◽  
...  

Corrosion inhibition of mild steel in 0.5M H2SO4 at 30oC with thiophene-2- ethylamine (TEA) as inhibitor has been assess by quantitative structure activity relation (QSAR) model and quantum chemical calculations. The results were evaluated using weight loss and electrochemical methods such as potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). The results showed good performance of TEA in corrosion protection which behaves as mixed inhibitor from PDP. The micrograph from FESEM and EDX dot mapping showed that the inhibitor adsorbed onto the metal surface with different distribution for S, C and N atoms which indicate less damage on the metal surface in the presence of TEA.


Sign in / Sign up

Export Citation Format

Share Document