The influence of stacking technologies on structural dynamic properties of electric motors iron cores

Author(s):  
Sebastian Mönninghoff ◽  
Markus Jaeger ◽  
Kay Hameyer

Purpose It is essential to understand the structural dynamic behavior of electrical machines to predict their acoustic and vibrational behavior. Stacking technology, which is used to manufacture soft magnetic cores, has a strong influence on the material properties. The purpose of this paper is therefore to research the influence of the stacking technologies welding and bonding with bake varnish on the modal properties of iron cores. Design/methodology/approach A finite element simulation model is developed based on homogenization of the stator core. Eigenfrequencies, modeshapes and modal damping ratios are extracted from measurements and are used to validate the simulation model. Findings Modal characteristics depend on the participation of certain material layers at a certain mode. Higher amount of shear deformation results in higher modal damping. Bonded stacks exhibit lower shear stiffness and higher damping ratios. Originality/value This research paper provides insights to the modal characteristics of iron cores used in electric machine and compares the influence of stacking technologies.

2016 ◽  
Vol 33 (1) ◽  
pp. 156-170 ◽  
Author(s):  
Kai Zhang ◽  
Zichen Deng ◽  
Junmiao Meng ◽  
Xiaojian Xu

Purpose – The purpose of this paper is to provide an efficient numerical solution for dynamic properties of sandwich tubes with honeycomb cores and investigate the effects of material distribution and relative density on the dynamic properties of the structure. Design/methodology/approach – By introducing dual variables and applying the variational principle, the canonical equations of Hamiltonian system are constructed. The precise integration algorithm and extended Wittrick-Williams algorithm are adopted to solve the equations and obtain the dispersion relations of sandwich tubes. The effects of the material distribution and the relative density on the non-dimensional frequencies of the sandwich tubes are investigated. Findings – The validity of the procedure and programs is verified by comparing with other works. Dispersion relations of the typical sandwich tubes are obtained. Dramatic differences are observed as the material distribution and relative density of the sandwich structures vary. Originality/value – The work gains insight into the role of symplectic analysis in the structural dynamic properties and expects to provide new opportunities for the optimal design of sandwich tubes with honeycomb cores in engineering applications.


Author(s):  
Song Gao ◽  
Tonggui He ◽  
Qihan Li ◽  
Yingli Sun ◽  
Jicai Liang

The problem of springback is one of the most significant factors affecting the forming accuracy for aluminum 3D stretch-bending parts. In order to achieve high-efficiency and high-quality forming of such kind of structural components, the springback behaviors of the AA6082 aluminum profiles are investigated based on the flexible multi-points 3D stretch-bending process (3D FSB). Firstly, a finite element simulation model for the 3D FSB process was developed to analyze the forming procedure and the springback procedure. The forming experiments were carried out for the rectangle-section profile to verify the effectiveness of the simulation model. Secondly, the influence of tension on springback was studied, which include the pre-stretching and the post-stretching. Furthermore, the influences of the bending radius and bending sequence are revealed. The results show that: (1) The numerical model can be used to evaluate the effects of bending radius and process parameters on springback in the 3D FSB process effectively. (2) The pre-stretching has little effect on the horizontal springback reduction, but it plays a prominent role in reducing the springback in the vertical direction. (3) The increase of bending deformation in any direction will lead to an increase of springback in its direction and reduce the springback in the other direction. Besides, it reduces the relative error in both directions simultaneously. This research established a foundation to achieve the precise forming of the 3D stretch-bending parts with closed symmetrical cross-section.


Author(s):  
Marco Eugeni ◽  
Giuliano Coppotelli ◽  
Franco Mastroddi ◽  
Paolo Gaudenzi ◽  
Stephan Muller ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Leonid Anatolevich Olenev ◽  
Rafina Rafkatovna Zakieva ◽  
Nina Nikolaevna Smirnova ◽  
Rustem Adamovich Shichiyakh ◽  
Kirill Aleksandrovich Ershov ◽  
...  

Purpose This study aims to present a more accurate lifetime prediction model considering solder chemical composition. Design/methodology/approach Thermal cycling and standard creep tests as well as finite element simulation were used. Findings The study found lower error in the solder joint lifetime evaluation. The higher the Ag content is, the higher the lifetime is achieved. Originality/value It is confirmed.


2021 ◽  
Author(s):  
XueTao Wei ◽  
caixue yue ◽  
DeSheng Hu ◽  
XianLi Liu ◽  
YunPeng Ding ◽  
...  

Abstract The processed surface contour shape is extracted with the finite element simulation software, and the difference value of contour shape change is used as the parameters of balancing surface roughness to construct the infinitesimal element cutting finite element model of supersonic vibration milling in cutting stability domain. The surface roughness trial scheme is designed in the central composite test design method to analyze the surface roughness test result in the response surface methodology. The surface roughness prediction model is established and optimized. Finally, the finite element simulation model and surface roughness prediction model are verified and analyzed through experiment. The research results show that, compared with the experiment results, the maximum error of finite element simulation model and surface roughness prediction model is 30.9% and12.3%, respectively. So, the model in this paper is accurate and will provide the theoretical basis for optimization study of auxiliary milling process of supersonic vibration.


Author(s):  
Manuel Gomes Correia ◽  
Célio Maschio ◽  
Denis José Schiozer

Super-giant carbonate fields, such as Ghawar, in Saudi Arabia, and Lula, at the Brazilian pre-salt, show highly heterogeneous behavior that is linked to high permeability intervals in thin layers. This article applies Local Grid Refinements (LGR) integrated with upscaling procedures to improve the representation of highly laminated reservoirs in flow simulation by preserving the static properties and dynamic trends from geological model. This work was developed in five main steps: (1) define a conventional coarse grid, (2) define LGR in the conventional coarse grid according to super-k and well locations, (3) apply an upscaling procedure for all scenarios, (4) define LGR directly in the simulation model, without integrate geological trends in LGR and (5) compare the dynamic response for all cases. To check results and compare upscaling matches, was used the benchmark model UNISIM-II-R, a refined model based on a combination of Brazilian Pre-salt and Ghawar field information. The main results show that the upscaling of geological models for coarse grid with LGR in highly permeable thin layers provides a close dynamic representation of geological characterization compared to conventional coarse grid and LGR only near-wells. Pseudo-relative permeability curves should be considered for (a) conventional coarse grid or (b) LGR scenarios under dual-medium flow simulations as the upscaling of discrete fracture networks and dual-medium flow models presents several limitations. The conventional approach of LGR directly in simulation model, presents worse results than LGR integrated with upscaling procedures as the extrapolation of dynamic properties to the coarse block mismatch the dynamic behavior from geological characterization. This work suggests further improvements for results for upscaling procedures that mask the flow behavior in highly laminated reservoirs.


1972 ◽  
Vol 11 (4) ◽  
pp. 671-676 ◽  
Author(s):  
J. G. Bullitt ◽  
F. A. Cotton ◽  
T. J. Marks

2017 ◽  
Vol 898 ◽  
pp. 1532-1538
Author(s):  
Yue Gao ◽  
Qian Jin Mao ◽  
Hai Wang ◽  
Zi Ming Wang ◽  
Su Ping Cui

Aiming at the heat dissipation of equipment, and based on ANSYS finite element simulation of thermal conductivity of coatings, the heat-dissipation coating filled with graphite and carbon nanotubes respectively, which integrates heat conduction (high thermal conductivity) and radiation (high emissivity), was successfully prepared by the method of solution mixing. Meanwhile, the effects of filler content, type and shape on thermal conductivity and emissivity of the coating were also investigated. The results indicate that the rising tendency between the simulated data by FEM and experimental value is consistent, which has a certain directive significance. In addition, graphite can improve the thermal conductivity and emissivity of the coating effectively; however, the emissivity decreases when the content exceeds 23.08%. The carbon nanotubes can improve the thermal conductivity and emissivity simultaneously, the thermal conductivity is 2.3 times that of pure resin, and the emissivity is up to 0.91 at the 2.0% mass fraction of carbon nanotubes.


2006 ◽  
Vol 326-328 ◽  
pp. 1585-1588
Author(s):  
B.J. Shi ◽  
Dong Wei Shu ◽  
J. Luo ◽  
Q.Y. Ng ◽  
J.H.T. Lau

Hard disk drives (HDD) are now the most important means of information storage, and they continue to be made smaller in size, higher in capacity, and lower in cost. The dynamic performance of an HDD has been an increasingly important consideration for its design, as we move forward toward its consumer applications. The dynamic properties of the head arm assembly (HAA) of a micro-drive were investigated using both experimental and numerical techniques. A finite element model for studying the dynamic property of the HAA was created and modified according to the experimental results. Good correlation between the experimental results and those by finite element simulation was achieved.


2014 ◽  
Vol 114 (1) ◽  
pp. 144-158 ◽  
Author(s):  
Antti Puurunen ◽  
Jukka Majava ◽  
Pekka Kess

Purpose – Ensuring the sufficient service level is essential for critical materials in industrial maintenance. This study aims to evaluate the use of statistically imperfect data in a stochastic simulation-based inventory optimization where items' failure characteristics are derived from historical consumption data, which represents a real-life situation in the implementation of such an optimization model. Design/methodology/approach – The risks of undesired shortages were evaluated through a service-level sensitivity analysis. The service levels were simulated within the error of margin of the key input variables by using StockOptim optimization software and real data from a Finnish steel mill. A random sample of 100 inventory items was selected. Findings – Service-level sensitivity is item specific, but, for many items, statistical imprecision in the input data causes significant uncertainty in the service level. On the other hand, some items seem to be more resistant to variations in the input data than others. Research limitations/implications – The case approach, with one simulation model, limits the generalization of the results. The possibility that the simulation model is not totally realistic exists, due to the model's normality assumptions. Practical implications – Margin of error in input data estimation causes a significant risk of not achieving the required service level. It is proposed that managers work to improve the preciseness of the data, while the sensitivity analysis against statistical uncertainty, and a correction mechanism if necessary, should be integrated into optimization models. Originality/value – The output limitations in the optimization, i.e. service level, are typically stated precisely, but the capabilities of the input data have not been addressed adequately. This study provides valuable insights into ensuring the availability of critical materials.


Sign in / Sign up

Export Citation Format

Share Document