The discrete Fourier transformation for seasonality and anomaly detection of an application to rare data

2020 ◽  
Vol 54 (2) ◽  
pp. 121-132
Author(s):  
Aryana Collins Jackson ◽  
Seán Lacey

PurposeThe discrete Fourier transformation (DFT) has been proven to be a successful method for determining whether a discrete time series is seasonal and, if so, for detecting the period. This paper deals exclusively with rare data, in which instances occur periodically at a low frequency.Design/methodology/approachData based on real-world situations is simulated for analysis.FindingsCycle number detection is done with spectral analysis, period detection is completed using DFT coefficients and signal shifts in the time domain are found using the convolution theorem. Additionally, a new method for detecting anomalies in binary, rare data is presented: the sum of distances. Using this method, expected events which have not occurred and unexpected events which have occurred at various sampling frequencies can be detected. Anomalies which are not considered outliers to be found.Research limitations/implicationsAliasing can contribute to extra frequencies which point to extra periods in the time domain. This can be reduced or removed with techniques such as windowing. In future work, this will be explored.Practical implicationsApplications include determining seasonality and thus investigating the underlying causes of hard drive failure, power outages and other undesired events. This work will also lend itself well to finding patterns among missing desired events, such as a scheduled hard drive backup or an employee's regular login to a server.Originality/valueThis paper has shown how seasonality and anomalies are successfully detected in seasonal, discrete, rare and binary data. Previously, the DFT has only been used for non-rare data.

Author(s):  
Zhi Gong ◽  
Shiyou Yang

Purpose The purpose of this work is to develop a computational paradigm for performance analysis of low-frequency electromagnetic devices containing both magnetic metamaterials (MTMs) and natural media. Design/methodology/approach A time domain finite element method (TDFEM) is proposed. The electromagnetic properties of the MTMs are modeled by a nonstandard Lorentz model. The time domain governing equation is derived by converting the one from the frequency domain into the time domain based on the Laplace transform and convolution. The backward difference is used for the temporal discretization. An auxiliary variable is introduced to derive the recursive formula. Findings The numerical results show good agreements between the time domain solutions and the frequency domain solutions. The error convergence trajectory of the proposed TDFEM conforms to the first-order accuracy. Originality/value To the best knowledge of the authors, the presented work is the first one focusing on TDFEMs for low-frequency near fields computations of MTMs. Consequently, the proposed TDFEM greatly benefits the future explorations and performance evaluations of MTM-based near field devices and systems in low-frequency electrical and electronic engineering.


Author(s):  
Yousun Li

In the time domain simulation of the response of an offshore structure under random waves, the time histories of the wave field should be generated as the input to the dynamic equations. Herein the wave field is the wave surface elevation, the water particle velocities and accelerations at structural members. The generated time histories should be able to match the given wave-field spectral descriptions, to trace the structural member motions if it is a compliant offshore structure, and be numerically efficient. Most frequently used generation methods are the direct summation of a limited number of cosine functions, the Fast Fourier Transformation, and the digital filtering model. However, none of them can really satisfy all the above requirements. A novel technique, called the Modulated Discrete Fourier Transformation, has been developed. Under this method, the wave time histories at each time instant is a summation of a few time-varying complex functions. The simulated time histories have continuous spectral density functions, and the motions of the structural members are well included. This method seems to be superior to all the conventional methods in terms of the above mentioned three requirements.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3985 ◽  
Author(s):  
Siyu Chen ◽  
Yanzhang Wang ◽  
Jun Lin

Residence time difference (RTD) fluxgate sensor is a potential device to measure the DC or low-frequency magnetic field in the time domain. Nevertheless, jitter noise and magnetic noise severely affect the detection result. A novel post-processing algorithm for jitter noise reduction of RTD fluxgate output strategy based on the single-frequency time difference (SFTD) method is proposed in this study to boost the performance of the RTD system. This algorithm extracts the signal that has a fixed frequency and preserves its time-domain information via a time–frequency transformation method. Thereby, the single-frequency signal without jitter noise, which still contains the ambient field information in its time difference, is yielded. Consequently, compared with the traditional comparator RTD method (CRTD), the stability of the RTD estimation (in other words, the signal-to-noise ratio of residence time difference) has been significantly boosted with sensitivity of 4.3 μs/nT. Furthermore, the experimental results reveal that the RTD fluxgate is comparable to harmonic fluxgate sensors, in terms of noise floor.


1986 ◽  
Vol 41 (1-2) ◽  
pp. 440-444 ◽  
Author(s):  
A. Bielecki ◽  
D. B. Zax ◽  
A. M. Thayer ◽  
J. M. Millar ◽  
A. Pines

Field cycling methods are described for the time domain measurement of nuclear quadrupolar and dipolar spectra in zero applied field. Since these techniques do not involve irradiation in zero field, they offer significant advantages in terms of resolution, sensitivity at low frequency, and the accessible range of spin lattice relaxation times. Sample data are shown which illustrate the high sensitivity and resolution attainable. Comparison is made to other field cycling methods, and an outline of basic instrumental requirements is given.


Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 704
Author(s):  
Daniel Soares de Alcantara ◽  
Pedro Paulo Balestrassi ◽  
José Henrique Freitas Gomes ◽  
Carlos Alberto Carvalho Castro

Continuous drive friction welding is a solid-state welding process that has been experimentally proven to be a fast and reliable method. This is a complex process; deformations in the viscosity of a material alter the friction between the surfaces of the pieces. All these dynamics cause changes in the vibration signals; the interpretation of these signals can reveal important information. The vibration signals generated during the friction and forging stages are measured on the stationary part of the structure to determine the influence of the manipulated variables on the time domain statistical characteristics (root mean square, peak value, crest factor, and kurtosis). In the frequency domain, empirical mode decomposition is used to characterize frequencies. It was observed that it is possible to identify the effects of the manipulated variables on the calculated statistical characteristics. The results also indicate that the effect of manipulated variables is stronger on low-frequency signals.


Author(s):  
Lorenzo Baldassari ◽  
Pierre Millien ◽  
Alice L. Vanel

AbstractWe study the electromagnetic field scattered by a metallic nanoparticle with dispersive material parameters in a resonant regime. We consider the particle placed in a homogeneous medium in a low-frequency regime. We define modes for the non-Hermitian problem as perturbations of electro-static modes, and obtain a modal approximation of the scattered field in the frequency domain. The poles of the expansion correspond to the eigenvalues of a singular boundary integral operator and are shown to lie in a bounded region near the origin of the lower-half complex plane. Finally, we show that this modal representation gives a very good approximation of the field in the time domain. We present numerical simulations in two dimensions to corroborate our results.


2018 ◽  
Vol 11 (3) ◽  
pp. 215-219
Author(s):  
C. F. Hu ◽  
N. J. Li

AbstractThe measurement accuracy of low-frequency narrow-band antenna is heavily influenced by its environment, which is also difficult to remove the clutter with a time gating. This paper proposes a method to improve the measurement accuracy of low-frequency narrow-band antenna using signal processing technique. The method is to predict the unknown value out of received original signal with an auto-regressive model (AR model) based on modern spectral estimation theory, and the parameters in AR model are calculated by maximum entropy spectral estimation algorithm. Thus, a wideband signal compared with the original band is obtained, and then the time-domain resolution is enhanced. The time gating is more exactly to separate the antenna radiation signal from multipath signals. The simulation and experimental results show that about 50% extended data for each ends of original band can be obtained after spectral extrapolation, and the time-domain resolution after extrapolation is twice than the original narrow-band signal, and the influence of measurement environment can be eliminated effectively. The method can be used to improve accuracy in actual antenna measurement.


Author(s):  
Mykola Ostroushko ◽  
André Buchau ◽  
Wolfgang Rucker

Purpose The purpose of this paper is to present the design and the numerical calculation of the electromagnetic heating system for the ablation therapy. Hence, the heating of the tumor cells must be processed very carefully to achieve a localized coagulative necrosis and to avoid too high temperatures inside the tissue. Design/methodology/approach The non-invasive method of the ablation therapy is implemented due to the inductive power transmission between the generator and implant. The ferromagnetic implant has a small size and can be placed intravenously into tumor cells. High-frequency driving currents are necessary to obtain high induced eddy currents within the ferromagnetic implant. Findings Finite element analysis has been used for the design and numerical calculation of the electromagnetic heating system. The electromagnetic analysis is done in the time domain due to the nonlinearity of the ferromagnetic implant. Magnetic fields are computed based on a magnetic vector potential formulation. The thermal analysis is done in the time domain as well. The temperature computation in biological tissue is based on a heat balance equation. Research limitations/implications This paper is focused on the design and simulation of the inductive system for the ablation therapy. Practical implications The designed system can be practically implemented. It can be used for the clinical study of the immune response by the thermal ablation therapy. Originality/value The common method of thermal ablation is combined with an inductive power transmission. It enables a repetitive application of this method to study the immune response.


Sign in / Sign up

Export Citation Format

Share Document