Y-Mat: an improved hybrid finite-discrete element code for addressing geotechnical and geological engineering problems

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gang Liu ◽  
Fengshan Ma ◽  
Maosheng Zhang ◽  
Jie Guo ◽  
Jun Jia

PurposeContinua and discontinua coexist in natural rock materials. This paper aims to present an improved approach for addressing the mechanical response of rock masses based on the combined finite-discrete element method (FDEM) proposed by Munjiza.Design/methodology/approachSeveral algorithms have been programmed in the new approach. The algorithms include (1) a simpler and more efficient algorithm to calculate the contact force; (2) An algorithm for tangential contact force closer to the actual physical process; (3) a plastic yielding criterion (e.g. Mohr-Coulomb) to modify the elastic stress for fitting the mechanical behavior of elastoplastic materials; and (4) a complete code for the mechanical calculation to be implemented in Matrix Laboratory (MATLAB).FindingsThree case studies, including two standard laboratory experiments (uniaxial compression and Brazilian split test) and one engineering-scale anti-dip slop model, are presented to illustrate the feasibility of the Y-Mat code and its ability to deal with multi-scale rock mechanics problems. The results, including the progressive failure process, failure mode and trajectory of each case, are acceptable compared to other corresponding studies. It is shown that, the code is capable of modeling geotechnical and geological engineering problems.Originality/valueThis article gives an improved FDEM-based numerical calculation code. And, feasibility of the code is verified through three cases. It can effectively solve the geotechnical and geological engineering problems.

2017 ◽  
Vol 34 (2) ◽  
pp. 251-271 ◽  
Author(s):  
Hongxiang Tang ◽  
Yuhui Guan ◽  
Xue Zhang ◽  
Degao Zou

Purpose This paper aims to develop a finite element analysis strategy, which is suitable for the analysis of progressive failure that occurs in pressure-dependent materials in practical engineering problems. Design/methodology/approach The numerical difficulties stemming from the strain-softening behaviour of the frictional material, which is represented by a non-associated Drucker–Prager material model, is tackled using the Cosserat continuum theory, while the mixed finite element formulation based on Hu–Washizu variational principle is adopted to allow the utilization of low-order finite elements. Findings The effectiveness and robustness of the low-order finite element are verified, and the simulation for a real-world landslide which occurred at the upstream side of Carsington embankment in Derbyshire reconfirms the advantages of the developed elastoplastic Cosserat continuum scheme in capturing the entire progressive failure process when the strain-softening and the non-associated plastic law are involved. Originality/value The permit of using low-order finite elements is of great importance to enhance computational efficiency for analysing large-scale engineering problems. The case study reconfirms the advantages of the developed elastoplastic Cosserat continuum scheme in capturing the entire progressive failure process when the strain-softening and the non-associated plastic law are involved.


2011 ◽  
Vol 90-93 ◽  
pp. 74-78 ◽  
Author(s):  
Jun Hu ◽  
Ling Xu ◽  
Nu Wen Xu

Fault is one of the most important factors affecting tunnel instability. As a significant and casual construction of Jinping II hydropower station, when the drain tunnel is excavated at depth of 1600 m, rockbursts and water inrush induced by several huge faults and zone of fracture have restricted the development of the whole construction. In this paper, a progressive failure progress numerical analysis code-RFPA (abbreviated from Rock Failure Process Analysis) is applied to investigate the influence of faults on tunnel instability and damaged zones. Numerical simulation is performed to analyze the stress distribution and wreck regions of the tunnel, and the results are consistent with the phenomena obtained from field observation. Moreover, the effects of fault characteristics and positions on the construction mechanical response are studied in details. Some distribution rules of surrounding rock stress of deep-buried tunnel are summarized to provide the reasonable references to TBM excavation and post-support of the drain tunnel, as well as the design and construction of similar engineering in future.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Daning Zhong ◽  
Jianlin Chen ◽  
Hui Zhou ◽  
Xiangrong Chen ◽  
Yali Jiang ◽  
...  

Accurate simulation of the failure process of hard brittle surrounding rockmass is very important for the analysis and control of the structural stability in deep underground engineering. In order to simulate the progressive failure process of the hard brittle surrounding rockmass, a continuous discontinuous deformation analysis method that couples the finite element and discrete element is adopted. Taking the URL test tunnel in Canada as an engineering case, the constitutive model of the contact considering the effects of cohesion weakening and friction strengthening is applied, and the 2D approximation to 3D excavation by applying elastic modulus reduction technology is adopted to simulate the range and depth of crack growth of the surrounding rockmass. Then, the comparison between simulated results and on-site monitoring results is performed, which shows good consistency. At the same time, the key factors in the numerical simulation of progressive failure in hard brittle rockmass are identified, including the number of elements, excavation effects, and constitutive models. The results show that the constitutive model determines the basic form of crack propagation, but in order to accurately simulate the progressive propagation of cracks, the number of elements must be sufficient enough and the effects of 3D excavation must be considered. The analysis accurately simulates the progressive failure characteristics of hard brittle surrounding rockmass under high stress, achieving the purpose of reasonably grasping the degree of damage to the surrounding rockmass, and provides technical reference and support on how to accurately simulate the failure of hard brittle surrounding rockmass using the finite discrete element method.


2018 ◽  
Vol 35 (2) ◽  
pp. 1049-1084 ◽  
Author(s):  
Beichuan Yan ◽  
Richard Regueiro

Purpose The purpose of this paper is to extend complex-shaped discrete element method simulations from a few thousand particles to millions of particles by using parallel computing on department of defense (DoD) supercomputers and to study the mechanical response of particle assemblies composed of a large number of particles in engineering practice and laboratory tests. Design/methodology/approach Parallel algorithm is designed and implemented with advanced features such as link-block, border layer and migration layer, adaptive compute gridding technique and message passing interface (MPI) transmission of C++ objects and pointers, for high performance optimization; performance analyses are conducted across five orders of magnitude of simulation scale on multiple DoD supercomputers; and three full-scale simulations of sand pluviation, constrained collapse and particle shape effect are carried out to study mechanical response of particle assemblies. Findings The parallel algorithm and implementation exhibit high speedup and excellent scalability, communication time is a decreasing function of the number of compute nodes and optimal computational granularity for each simulation scale is given. Nearly 50 per cent of wall clock time is spent on rebound phenomenon at the top of particle assembly in dynamic simulation of sand gravitational pluviation. Numerous particles are necessary to capture the pattern and shape of particle assembly in collapse tests; preliminary comparison between sphere assembly and ellipsoid assembly indicates a significant influence of particle shape on kinematic, kinetic and static behavior of particle assemblies. Originality/value The high-performance parallel code enables the simulation of a wide range of dynamic and static laboratory and field tests in engineering applications that involve a large number of granular and geotechnical material grains, such as sand pluviation process, buried explosion in various soils, earth penetrator interaction with soil, influence of grain size, shape and gradation on packing density and shear strength and mechanical behavior under different gravity environments such as on the Moon and Mars.


2022 ◽  
Vol 141 ◽  
pp. 104557
Author(s):  
Lei Sun ◽  
Quansheng Liu ◽  
Aly Abdelaziz ◽  
Xuhai Tang ◽  
Giovanni Grasselli

2021 ◽  
Author(s):  
Antonio Pol ◽  
Fabio Gabrieli ◽  
Lorenzo Brezzi

AbstractIn this work, the mechanical response of a steel wire mesh panel against a punching load is studied starting from laboratory test conditions and extending the results to field applications. Wire meshes anchored with bolts and steel plates are extensively used in rockfall protection and slope stabilization. Their performances are evaluated through laboratory tests, but the mechanical constraints, the geometry and the loading conditions may strongly differ from the in situ conditions leading to incorrect estimations of the strength of the mesh. In this work, the discrete element method is used to simulate a wire mesh. After validation of the numerical mesh model against experimental data, the punching behaviour of an anchored mesh panel is investigated in order to obtain a more realistic characterization of the mesh mechanical response in field conditions. The dimension of the punching element, its position, the anchor plate size and the anchor spacing are varied, providing analytical relationships able to predict the panel response in different loading conditions. Furthermore, the mesh panel aspect ratio is analysed showing the existence of an optimal value. The results of this study can provide useful information to practitioners for designing secured drapery systems, as well as for the assessment of their safety conditions.


2020 ◽  
Vol 37 (7) ◽  
pp. 2517-2537
Author(s):  
Mostafa Rezvani Sharif ◽  
Seyed Mohammad Reza Sadri Tabaei Zavareh

Purpose The shear strength of reinforced concrete (RC) columns under cyclic lateral loading is a crucial concern, particularly, in the seismic design of RC structures. Considering the costly procedure of testing methods for measuring the real value of the shear strength factor and the existence of several parameters impacting the system behavior, numerical modeling techniques have been very much appreciated by engineers and researchers. This study aims to propose a new model for estimation of the shear strength of cyclically loaded circular RC columns through a robust computational intelligence approach, namely, linear genetic programming (LGP). Design/methodology/approach LGP is a data-driven self-adaptive algorithm recently used for classification, pattern recognition and numerical modeling of engineering problems. A reliable database consisting of 64 experimental data is collected for the development of shear strength LGP models here. The obtained models are evaluated from both engineering and accuracy perspectives by means of several indicators and supplementary studies and the optimal model is presented for further purposes. Additionally, the capability of LGP is examined to be used as an alternative approach for the numerical analysis of engineering problems. Findings A new predictive model is proposed for the estimation of the shear strength of cyclically loaded circular RC columns using the LGP approach. To demonstrate the capability of the proposed model, the analysis results are compared to those obtained by some well-known models recommended in the existing literature. The results confirm the potential of the LGP approach for numerical analysis of engineering problems in addition to the fact that the obtained LGP model outperforms existing models in estimation and predictability. Originality/value This paper mainly represents the capability of the LGP approach as a robust alternative approach among existing analytical and numerical methods for modeling and analysis of relevant engineering approximation and estimation problems. The authors are confident that the shear strength model proposed can be used for design and pre-design aims. The authors also declare that they have no conflict of interest.


Author(s):  
Sheng Bao ◽  
Shengnan Hu ◽  
Yibin Gu

The objective of this research is to explore the correlation between the piezomagnetic response and ratcheting failure behavior under asymmetrical cyclic stressing in X80 pipeline steel. The magnetic field variations from cycle to cycle were recorded simultaneously during the whole-life ratcheting test. Analysis made in the present work shows that the piezomagnetic hysteresis loop evolves systematically with the number of cycles in terms of its shape and position. Corresponding to the three-stage process in the mechanical response, piezomagnetic response can also be divided into three principal stages, but the evolution of magnetic parameter is more complex. Furthermore, the loading branch and unloading branch of the magnetic field-stress hysteresis loop separate gradually from each other during ratcheting failure process, leading to the shape of hysteresis loop changes completely. Therefore, the progressive degradation of the steel under ratcheting can be tracked by following the evolution of the piezomagnetic field. And the shape transition of the hysteresis loop can be regarded as an early warning of the ratcheting failure.


2021 ◽  
pp. 105678952110014
Author(s):  
Jichang Wang ◽  
Xiaoming Guo ◽  
Nailong Zhang

In this research, experiments and numerical simulations are employed to research the failure process of concrete. Fracture experiments on three-point bending (TPB) concrete beams with a prefabricated edge notch at the middle of the beam bottom are performed using a modified rigid testing instrument. The characteristics of the crack and section are analyzed, including the crack tensile opening displacement, crack length and width, and crack faces characteristics. Also, the full curves of the force-crack tensile opening displacement (CMOD) and force-deflection of the TPB beams with the prefabricated edge notch after breakage are obtained. The phase field (PF) damage model is applied to the mixed-mode and mode-I failure processes of concrete structures through the ABAQUS subroutine user defined element (UEL). The crack path and the full curves of force-CMOD and force-deflection obtained by numerical calculations are consistent with the experimental results and the calculated results of other researchers. The influences of the mesh sizes, initial lengths, and notched depths on the TPB beam of concrete are also analyzed.


Sign in / Sign up

Export Citation Format

Share Document