scholarly journals LES-based simulation of the time-resolved flow for rotor-stator interactions in axial fan stages

Author(s):  
Jesús Manuel Fernandez Oro ◽  
Andrés Meana-Fernández ◽  
Monica Galdo Vega ◽  
Bruno Pereiras ◽  
José González Pérez

Purpose The purpose of this paper is the development of a CFD methodology based on LES computations to analyze the rotor–stator interaction in an axial fan stage. Design/methodology/approach A wall-modeled large eddy simulation (WMLES) has been performed for a spanwise 3D extrusion of the central section of the fan stage. Computations were performed for three different operating conditions, from nominal (Q_N) to off-design (85 per cent Q_N and 70 per cent Q_N) working points. Circumferential periodic conditions were introduced to reduce the extent of the computational domain. The post-processing procedure enabled the segregation of unsteady deterministic features and turbulent scales. The simulations were experimentally validated using wake profiles and turbulent scales obtained from hot-wire measurements. Findings The transport of rotor wakes and both wake–vane and wake–wake interactions in the stator flow field have been analyzed. The description of flow separation, particularly at off-design conditions, is fully benefited from the LES performance. Rotor wakes impinging on the stator vanes generate a coherent large-scale vortex shedding at reduced frequencies. Large pressure fluctuations in the stagnation region on the leading edge of the vanes have been found. Research limitations/implications LES simulations have shown to be appropriate for the assessment of the design of an axial fan, especially for specific operating conditions for which a URANS model presents a lower performance for turbulence description. Originality/value This paper describes the development of an LES-based simulation to understand the flow mechanisms related to the rotor–stator interaction in axial fan stages.

Author(s):  
Benjamin Pardowitz ◽  
Ulf Tapken ◽  
Lars Neuhaus ◽  
Lars Enghardt

Rotating instability (RI) occurs at off-design conditions in axial compressors, predominantly in rotor configurations with large tip clearances. Characteristic spectral signatures with side-by-side peaks below the blade passing frequency (BPF) are typically referred to RI located in the clearance region next to the leading edge (LE). Each peak can be assigned to a dominant circumferential mode. RI is the source of the clearance noise (CN) and an indicator for critical operating conditions. Earlier studies at an annular cascade pointed out that RI modes of different circumferential orders occur stochastically distributed in time and independently from each other, which is contradictory to existing explanations of RI. Purpose of the present study is to verify this generally with regard to axial rotor configurations. Experiments were conducted on a laboratory axial fan stage mainly using unsteady pressure measurements in a sensor ring near the rotor LE. A mode decomposition based on cross spectral matrices was used to analyze the spectral and modal RI patterns upstream of the rotor. Additionally, a time-resolved analysis based on a spatial discrete-Fourier-transform (DFT) was applied to clarify the temporal characteristics of the RI modes and their potential interrelations. The results and a comparison with the previous findings on the annular cascade corroborate a new hypothesis about the basic RI mechanism. This hypothesis implies that instability waves of different wavelengths are generated stochastically in a shear layer resulting from a backflow in the tip clearance region.


2011 ◽  
Vol 681 ◽  
pp. 261-292 ◽  
Author(s):  
M. KEARNEY-FISCHER ◽  
J.-H. KIM ◽  
M. SAMIMY

Mach wave radiation is one of the better understood sources of jet noise. However, the exact conditions of its onset are difficult to determine and the literature to date typically explores Mach wave radiation well above its onset conditions. In order to determine the conditions for the onset of Mach wave radiation and to explore its behaviour during onset and beyond, three ideally expanded jets with Mach numbers Mj = 0.9, 1.3 and 1.65 and stagnation temperature ratios ranging over To/T∞ = 1.0–2.5 (acoustic Mach number 0.83–2.10) were used. Data are collected using a far-field microphone array, schlieren imaging and streamwise two-component particle image velocimetry. Using arc filament plasma actuators to force the jet provides an unprecedented tool for detailed examination of Mach wave radiation. The response of the jet to various forcing parameters (combinations of one azimuthal mode m = 0, 1 and 3 and one Strouhal number StDF = 0.09–3.0) is explored. Phase-averaged schlieren images clearly show the onset and evolution of Mach wave radiation in response to both changes in the jet operating conditions and forcing parameters. It is observed that Mach wave radiation is initiated as a coalescing of the near-field hydrodynamic pressure fluctuations in the immediate vicinity of the large-scale structures. As the jet exit velocity increases, the hydrodynamic pressure fluctuations coalesce, first into a curved wavefront, then flatten into the conical wavefronts commonly associated with Mach wave radiation. The results show that the largest and most coherent structures (e.g. forcing with m = 0 and StDF ~ 0.3) produce the strongest Mach wave radiation. Conversely, Mach wave radiation is weakest when the structures are the least coherent (e.g. forcing with m = 3 and StDF > 1.5).


Author(s):  
Rémy Fransen ◽  
Nicolas Gourdain ◽  
Laurent Y. M. Gicquel

This work focuses on numerical simulations of flows in blade internal cooling system. Large Eddy Simulation (LES) and Reynolds-Averaged Navier Stokes (RANS) approaches are compared in a typical blade cooling related problem. The case is a straight rib-roughened channel with high blockage ratio, computed and compared for both a periodic and full spatial domains. The configuration was measured at the Von Karman Institute (VKI) using Particle Image Velocimetry (PIV) in near gas turbine operating conditions. Results show that RANS models used fail to predict the full evolution of the flow within the channels where massive separation and large scale unsteady features are evidenced. In contrast LES succeeds in reproducing these complex flow motions and both mean and fluctuating components are clearly improved in the channels and in the near wall region. Periodic computations are gauged against the spatial computational domain and results on the heat transfer problem are addressed.


Author(s):  
J. M. Ferna´ndez Oro ◽  
K. M. Argu¨elles Di´az ◽  
C. Santolaria Morros ◽  
R. Ballesteros Tajadura

The potential effect of the inlet guide vanes blockage is predominant in an axial one-stage configuration when the upstream flow field is considered. In the same way, rotor downstream, the main unsteadiness is provoked by the rotor wakes mixing-out at the machine discharge. Nevertheless, if the gap between the rows is significantly reduced, the stator wakes are not allowed to be mixed out before impinging the rotor blades, so a chopping effect overcomes, stretching and tilting them, and generating wake-wake interactions and new loss sources at the exit. On a similar trend, it is expected that a reduced axial gap allows the potential unsteadiness of the rotor blockage between the blades to be propagated upstream, modulating the flow conditions at the stator passages, and even at vanes leading edge locations. In this paper, the evolution of the rotor potential interaction within the stator passages and up to the vanes leading edge is analyzed. The main goal is placed on the analysis of the propagation, relating the axial distance with the attenuation of those potential mechanisms. A numerical 3D simulation of a complete single stage axial flow blower has been developed and executed using a commercial code that resolves the URANS set of equations. The axial gap between the 13-IGVs stator and the 9-blade rotor has been modified in order to evaluate its influence on the potential distortion propagated upstream of the stator. For the closing of turbulence, a LES scheme with a Smagorinsky-Lilly model is used in the computations. Finally, due to the LES characteristics, a phase-averaged procedure has to be introduced for the simulation post-processing. Complementary, experimental measurements have been carried out over a test rig with modifiable axial gap between the fixed and rotating blade rows. As a matter of fact, pressure transducers were placed all along the machine shroud to capture pressure fluctuations related to potential sources radiated from the rotor blades. These measurements have been analyzed using frequential analysis, which is essential to identify the origin of the flow inlet distortions. The final objective is to complete the rotor-stator interaction scenario both downstream and upstream the stage. Previous works were focused on the downstream conditions and now the upstream potential propagation is studied in detail.


Author(s):  
Armin Faßbender ◽  
Martin Enneking ◽  
Peter Jeschke

Abstract This paper investigates the generation of rotor-alone tones and their contribution to the outflow noise in a transonic centrifugal compressor stage with vaneless diffuser and volute by means of unsteady full-annulus CFD-simulations. The aerodynamic field, as well as the generation and propagation of sound, were simulated simultaneously using the URANS-approach of the solver TRACE and a numerical grid consisting of 170M cells. To assess the accuracy of the predicted fluctuations, the investigation compares the simulated diffuser flow field to measured flow angles and pressure fluctuations obtained from experiments conducted on a large-scale test rig. The analysis explains the different sound generation mechanisms responsible for tonal components in the acoustic spectrum at the compressor outlet, based on the Fourier decomposition of the pressure fluctuations in diffuser and volute. Further, the paper analyzes the modal structure of the simulated sound field at the volute outlet by means of a radial mode analysis and discusses the influence of changing operating conditions on the sound power emitted. The analyses reveal that supersonic flow phenomena occurring at choked operating conditions cause a significant increase in noise emissions. Furthermore, the investigation shows that the sound field at the volute outlet is dominated by few low-order modes, a fact that justifies analysis using methods based on Compressed Sensing in future experimental investigations.


Author(s):  
Miguel R. Visbal ◽  
Daniel J. Garmann

Computations have been carried out in order to describe the complex unsteady flow structure over a stationary and plunging aspect-ratio-two wing under low Reynolds number conditions (Rec = 104). The flow fields are computed employing a high-fidelity implicit large-eddy simulation (ILES) approach found to be effective for moderate Reynolds number flows exhibiting mixed laminar, transitional and turbulent regions. The evolution of the flow structure and aerodynamic loading as a function of increasing angle of attack is presented. Lift and pressure fluctuations are found to be primarily dominated by the large scale circulatory pattern established above the wing due to separation from the leading edge, and by the inherent three dimensionality of the flow induced by the finite aspect ratio. The spanwise distribution of the sectional lift coefficient revealed only a minor direct contribution to the loading exherted by the tip vortex. High-frequency, small-amplitude oscillations are shown to have a significant effect on the separation process and accompanying loads suggesting potential flow control through either suitable actuation or aero-elastic tailoring.


2017 ◽  
Vol 69 (4) ◽  
pp. 605-611
Author(s):  
Xizhi Ma ◽  
Miaomiao Li

Purpose Large scale is a trend of the ball mill, so the loads on their bearings become very large, bearing operating conditions turn into more severe. The moment of inertia to their pivot of the pad increase significantly, so it leads to the difficult of the pad attitude adjustment and makes the pad tilting angles time response slow, the key factor to effects attitude adjustment is the oil film moment to the pad pivot at unbalance position. the oil film moment and its effect factors must be studied in the design of the bearing used in ball mill. Design/methodology/approach Models about the lubrication of multi-pocket pivoted pad hydrostatic bearing is established, the complicated relationship of the oil flow rate between the oil pockets are taken into account. Finite differential method is used to solv the model, and theroy of finite element method is use to calculate the oil flow rate out of the pocket edges. Newton’s methods are used to determine the pressure of pockets.The pad tilting moment to its pivot is numerically analyzed. Findings The tilting moment to its pivot is set as an indicator of the ability for a pad to adjust its attitude. The effects of the diameter of throttling capillary and the pocket area on the attitude adjusting capacity is studied. Relations between the attitude adjustment capacity for a pad and there effects factors are presented. Practical implications The methods and results have the special reference to the design and operation of multiple pockets tilted pad hydrostatic journal bearing. Originality/value Methods to studied the pad attitude adjustment are given in the article for the multi-pocket pivot pad hydrostatic beairng.The influence factors on pad attitude adjusting capacity are discussed for a this specail kind hydrostatic bearing, the how the factors influence the pad tilting angle adjustment are presented.


2003 ◽  
Vol 9 (2) ◽  
pp. 135-144 ◽  
Author(s):  
Shijie Guo ◽  
Hidenobu Okamoto

The pressure fluctuations and the radial fluid forces acting on the impeller, the pressures in the volute, as well as the vibration of the shaft in a centrifugal pump were measured simultaneously, and their relationship was investigated. Experiments were done for various diffuser vanes, flow rates, and rotating speeds. It was demonstrated that both the blade-pressure fluctuations and the volute static pressures are nonuniform circumferentially (not axisymmetrical) under off-design operating conditions and that the two have a strong relationship. At high flow rates, the blade pressure fluctuations, induced by rotor-stator interactions, are large in areas where the volute static pressure is low. The traveling directions of the rotating pressure waves, the whirling directions of the radial fluid forces, and the most predominant frequency components of both the fluctuations and the forces are discussed, and an equation for predicting them is introduced. It was also noted that large alternating fluid forces are not necessarily associated with large pressure fluctuations. Furthermore, when measuring the radial fluid forces in the rotating frame, other frequency components, in addition to those related to the products of the diffuser vane number and the rotating frequency, may occur due to the circumferential unevenness of the pressure fluctuations on the impeller. These components are predictable.


2004 ◽  
Vol 126 (5) ◽  
pp. 716-723 ◽  
Author(s):  
Jean-Pierre Franc ◽  
Claude Rebattet ◽  
Alain Coulon

The thermal effects which affect the development of leading edge cavitation in an inducer were investigated experimentally using refrigerant R114. For different operating conditions, the evolution of the cavity length with the cavitation parameter was determined from visualizations. The tests were conducted up to two-phase breeding. The comparison of tests in R114 and in cold water allowed us to estimate the amplitude of the thermodynamic effect. The results show that the B-factor depends primarily upon the degree of development of cavitation but not significantly upon other parameters such as the inducer rotation speed or the fluid temperature, at least in the present domain of investigation. These trends are qualitatively in agreement with the classical entrainment theory. In addition, pressure fluctuations spectra were determined in order to detect the onset of cavitation instabilities and particularly of alternate blade cavitation and rotating cavitation. If the onset of alternate blade cavitation appeared to be connected to a critical cavity length, the results are not so clear concerning the onset of rotating cavitation.


2015 ◽  
Vol 137 (7) ◽  
Author(s):  
Klemens Vogel ◽  
Reza S. Abhari ◽  
Armin Zemp

Vaned diffusers in centrifugal compressor stages are used to achieve higher stage pressure ratios, higher stage efficiencies, and more compact designs. The interaction of the stationary diffuser with the impeller can lead to resonant vibration with potentially devastating effects. This paper presents unsteady diffuser vane surface pressure measurements using in-house developed, flush mounted, fast response piezoresistive pressure transducers. The unsteady pressures were recorded for nine operating conditions, covering a wide range of the compressor map. Experimental work was complemented by 3D unsteady computational fluid dynamics (CFD) simulations using ansys cfx V12.1 to detail the unsteady diffuser aerodynamics. Pressure fluctuations of up to 34.4% of the inlet pressure were found. High pressure variations are present all along the vane and are not restricted to the leading edge region. Frequency analysis of the measured vane surface pressures show that reduced impeller loading, and the corresponding reduction of tip leakage fluid changes the characteristics of the fluctuations from a main blade count to a total blade count. The unsteady pressure fluctuations in the diffuser originate from three distinct locations. The impact of the jet-wake flow leaving the impeller results in high variation close to the leading edge. It was observed that CFD results overpredicted the amplitude of the pressure fluctuation on average by 62%.


Sign in / Sign up

Export Citation Format

Share Document