Numerical simulation of flow with large eddy simulation at Re = 3900

2019 ◽  
Vol 30 (5) ◽  
pp. 2397-2409 ◽  
Author(s):  
Niaz B. Khan ◽  
Zainah B. Ibrahim ◽  
Mian Ashfaq Ali ◽  
Mohammed Jameel ◽  
Muhammad Ijaz Khan ◽  
...  

Purpose Over the past few decades, the flow around circular cylinders has been one of the highly researched topics in the field of offshore engineering and fluid-structure interaction (FSI). In the current study, numerical simulations for flow around a fixed circular cylinder are performed at Reynolds number (Re) = 3900 with the LES method using the ICEM-CFD and ANSYS Fluent tool for meshing and analysis, respectively. Previously, similar studies have been conducted at the same Reynolds number, but there have been discrepancies in the results, particularly in calculating the recirculation length and angle of separation. In addition, the purpose of this study is to address the impact of time interval averaging to obtain the fully converged solution. Design/methodology/approach This study presents the LES method, using the ICEM-CFD and ANSYS fluent tool for meshing and analysis. Findings In the current study, turbulence statistics are sampled for 25, 50, 75 and 100 vortex-shedding cycles with the CFL value O (1). The recirculation length, angle of separation, hydrodynamic coefficients and the wake behind the cylinder are investigated up to ten diameters. The drag coefficient and Strouhal number are observed to be less sensitive, whereas the recirculation length appeared to be highly dependent on the average time statistics and the non-dimensional time step. Similarly, the mean streamwise and cross-flow velocity are observed to be sensitive to the average time statistics and non-dimensional time step in the wake region near the cylinder. Originality/value In the current investigation, turbulence statistics are sampled for 25, 50, 75 and 100 vortex-shedding cycles with the CFL value O (1), using large eddy simulation method at Re = 3900 around a circular cylinder. The impact of time interval averaging to obtain the fully converged mean flow field is addressed. No such consideration is yet published in the literature.

2021 ◽  
Author(s):  
Jihang Li ◽  
Hyunguk Kwon ◽  
Drue Seksinsky ◽  
Daniel Doleiden ◽  
Jacqueline O’Connor ◽  
...  

Abstract Pilot flames are commonly used to extend combustor operability limits and suppress combustion oscillations in low-emissions gas turbines. Combustion oscillations, a coupling between heat release rate oscillations and combustor acoustics, can arise at the operability limits of low-emissions combustors where the flame is more susceptible to perturbations. While the use of pilot flames is common in land-based gas turbine combustors, the mechanism by which they suppress instability is still unclear. In this study, we consider the impact of a central jet pilot on the stability of a swirl-stabilized flame in a variable-length, single-nozzle combustor. Previously, the pilot flame was found to suppress the instability for a range of equivalence ratios and combustor lengths. We hypothesize that combustion oscillation suppression by the pilot occurs because the pilot provides hot gases to the vortex breakdown region of the flow that recirculate and improve the static, and hence dynamic, stability of the main flame. This hypothesis is based on a series of experimental results that show that pilot efficacy is a strong function of pilot equivalence ratio but not pilot flow rate, which would indicate that the temperature of the pilot gases as well as the combustion intensity of the pilot flame play more of a role in oscillation stabilization than the length of the pilot flame relative to the main flame. Further, the pilot flame efficacy increases with pilot flame equivalence ratio until it matches the main flame equivalence ratio; at pilot equivalence ratios greater than the main equivalence ratio, the pilot flame efficacy does not change significantly with pilot equivalence ratio. To understand these results, we use large-eddy simulation to provide a detailed analysis of the flow in the region of the pilot flame and the transport of radical species in the region between the main flame and pilot flame. The simulation, using a flamelet/progress variable-based chemistry tabulation approach and standard eddy viscosity/diffusivity turbulence closure models, provides detailed information that is inaccessible through experimental measurements.


2018 ◽  
Vol 28 (5) ◽  
pp. 1096-1116 ◽  
Author(s):  
Emmanuel Leveque ◽  
Hatem Touil ◽  
Satish Malik ◽  
Denis Ricot ◽  
Alois Sengissen

Purpose The Lattice Boltzmann (LB) method offers an alternative to conventional computational fluid dynamics (CFD) methods. However, its practical use for complex turbulent flows of engineering interest is still at an early stage. This paper aims to outline an LB wall-modeled large-eddy simulation (WMLES) solver. Design/methodology/approach The solver is dedicated to complex high-Reynolds flows in the context of WMLES. It relies on an improved LB scheme and can handle complex geometries on multi-resolution block structured grids. Findings Dynamic and acoustic characteristics of a turbulent airflow past a rod-airfoil tandem are examined to test the capabilities of this solver. Detailed direct comparisons are made with both experimental and numerical reference data. Originality/value This study allows assessing the potential of an LB approach for industrial CFD applications.


2020 ◽  
Vol 26 (9) ◽  
pp. 1647-1656
Author(s):  
Weiwei Wu ◽  
Zhouzhou Wang ◽  
Shuang Ding ◽  
Aiping Song ◽  
Dejia Zhu

Purpose The effects of infiltrant-related factors during post-processing on mechanical performance are fully considered for three-dimensional printing (3DP) technology. The factors contain infiltrant type, infiltrating means, infiltrating frequency and time interval of infiltrating. Design/methodology/approach A series of printing experiments are conducted and the parts are processed with different conditions by considering the above mentioned four parameters. Then the mechanical performances of the parts are tested from both macroscopic and microscopic papers. In the macroscopic view, the compressive strength of each printed part is measured by the materials testing machine – Instron 3367. In the microscopic view, scanning electron microscope and energy dispersion spectrum are used to obtain microstructure images and element content results. The pore size distributions of the parts are measured further to illustrate that if the particles are bound tightly by infiltrant. Then, partial least square (PLS) is used to conduct the analysis of the influencing factors, which can solve the small-sample problem well. The regression analysis and the influencing degree of each factor are explored further. Findings The experimental results show that commercial infiltrant has an outstanding performance than other super glues. The infiltrating action will own higher compressive strength than the brushing action. The higher infiltrating frequency and inconsistent infiltrating time interval will contribute to better mechanical performance. The PLS analysis shows that the most important factor is the infiltrating method. When compare the fitted value with the actual value, it is clear that when the compressive strength is higher, the fitting error will be smaller. Practical implications The research will have extensive applicability and practical significance for powder-based additive manufacturing. Originality/value The impact of the infiltrating-related post-processing on the performance of 3DP technology is easy to be ignored, which is fully taken into consideration in this paper. Both macroscopic and microscopic methods are conducted to explore, which can better explain the mechanical performance of the parts. Furthermore, as a small-sample method, PLS is used for influencing factors analysis. The variable importance in the projection index can explain the influencing degree of each parameter.


Author(s):  
H. T. C. Pedro ◽  
K.-W. Leung ◽  
M. H. Kobayashi ◽  
H. R. Riggs

This work concerns the numerical investigation of the impact of a wave on a square column. The wave is generated by a dam break in a wave tank. Two turbulence models were used: Large Eddy Simulations (LES) and Unsteady Reynolds Averaged Navier-Stokes (URANS). The numerical simulations were carried out using a finite volume approximation and the SIMPLE algorithm for the solution of the governing equations. Turbulence was modeled with the standard Smagorinsky-Lilly subgrid-model for the LES and the standard κ-ε model for the URANS. The results are validated against experimental data for the wave impact on a square column facing the flow. The results, especially for LES, show very good agreement between the predictions and experimental results. The overall accuracy of the LES, as expected, is superior to the URANS. However, if computational resources are limited, URANS can still provide satisfactory results for structural design.


2019 ◽  
Vol 30 (7) ◽  
pp. 3585-3605 ◽  
Author(s):  
Cheng Liu ◽  
Qingdong Yan ◽  
Houston G. Wood

Purpose The purpose of this paper is to study the mechanism and suppression of instabilities induced by cavitating flow around a three-dimensional hydrofoil with a particular focus on cavitation control with a slot. Design/methodology/approach The transient cavitating flow around a Clark-Y hydrofoil was investigated using a transport-equation-based cavitation model and the stress-blended eddy simulation model was used to capture the flow turbulence. A homogeneous Rayleigh–Plesset cavitation model was used to model the transient cavitation process and the results were validated with test data. A slot was applied to the hydrofoil to suppress cavitation instabilities, and various slot widths and exit locations were applied to the blade and the cavitation behavior, as well as drag/lift forces, were simulated and compared to investigate the effects of slot geometries on cavitation suppression. Findings The large eddy simulation based turbulence model was able to capture the interactions between the cavitation and turbulence. Moreover, the simulation revealed that the re-entrant jet was responsible for the periodic shedding of cavities. The results indicated that a slot was able to mitigate or even suppress cavitation-induced instabilities. A jet flow was generated at the slot exit and disturbed the re-entrant jet. If the slot geometry was properly designed, the jet could block the re-entrant jet and suppress the unsteady cavitation behavior. Originality/value This study provides unique insights into the complicated transient cavitation flows around a three-dimensional hydrofoil and introduces an effective passive cavitation control technique useful to researchers and engineers in the areas of fluid dynamics and turbomachinery.


2019 ◽  
Vol 29 (7) ◽  
pp. 2253-2276
Author(s):  
Mohammad Haji Mohammadi ◽  
Joshua R. Brinkerhoff

Purpose Turbomachinery, including pumps, are mainly designed to extract/produce energy from/to the flow. A major challenge in the numerical simulation of turbomachinery is the inlet flow rate, which is routinely treated as a known boundary condition for simulation purposes but is properly a dependent output of the solution. As a consequence, the results from numerical simulations may be erroneous due to the incorrect specification of the discharge flow rate. Moreover, the transient behavior of the pumps in their initial states of startup and final states of shutoff phases has not been studied numerically. This paper aims to develop a coupled procedure for calculating the transient inlet flow rate as a part of the solution via application of the control volume method for linear momentum. Large eddy simulation of a four-blade axial hydraulic pump is carried out to calculate the forces at every time step. The sharp interface immersed boundary method is used to resolve the flow around the complex geometry of the propeller, stator and the pipe casing. The effect of the spurious pressure fluctuations, inherent in the sharp interface immersed boundary method, is damped by local time-averaging of the forces. The developed code is validated by comparing the steady-state volumetric flow rate with the experimental data provided by the pump manufacturer. The instantaneous and time-averaged flow fields are also studied to reveal the flow pattern and turbulence characteristics in the pump flow field. Design/methodology/approach The authors use control volume analysis for linear momentum to simulate the discharge rate as part of the solution in a large eddy simulation of an axial hydraulic pump. The linear momentum balance equation is used to update the inlet flow rate. The sharp interface immersed boundary method with dynamic Smagorinsky sub-grid stress model and a proper wall model is used. Findings The steady-state volumetric flow rate has been computed and validated by comparing to the flow rate specified by the manufacturer at the simulation conditions, which shows a promising result. The instantaneous and time averaged flow fields are also studied to reveal the flow pattern and turbulence characteristics in the pump flow field. Originality/value An approach is proposed for computing the volumetric flow rate as a coupled part of the flow solution, enabling the simulation of turbomachinery at all phases, including the startup/shutdown phase. To the best of the authors’ knowledge, this is the first large eddy simulation of a hydraulic pump to calculate the transient inlet flow rate as a part of the solution rather than specifying it as a fixed boundary condition. The method serves as a numerical framework for simulating problems incorporating complex shapes with moving/stationary parts at all regimes including the transient start-up and shut-down phases.


Author(s):  
Yunfei Wang ◽  
Huanlong Chen ◽  
Huaping Liu ◽  
Yanping Song ◽  
Fu Chen

An in-house large eddy simulation (LES) code based on three-dimensional compressible N-S equations is used to research the impact of incoming wakes on unsteady evolution characteristic in a low-pressure turbine (LPT) cascade. The Mach number is 0.4 and Reynolds number is 0.6 × 105 (based on the axial chord and outlet velocity). The reduced frequency of incoming wakes is Fred = 0 (without wakes), 0.37 and 0.74. A detailed analysis of Reynolds stresses and turbulent kinetic energy inside the boundary layer has been carried out. Particular consideration is devoted to the transport process of incoming wakes and the intermittent property of the unsteady boundary layer. With the increase of reduced frequency, the inhibiting effect of wakes on boundary layer separation gradually enhances. The separation at the rear part of the suction side is weakened and the separation point moves downstream. However, incoming wakes lead to an increase in dissipation and aerodynamic losses in the main flow area. Excessive reduced frequency ( Fred = 0.74) causes the main flow area to become one of the main source areas of loss. An optimal reduced frequency exists to minimize the aerodynamic loss of the linear cascade.


2010 ◽  
Vol 652 ◽  
pp. 5-44 ◽  
Author(s):  
S. DUPONT ◽  
F. GOSSELIN ◽  
C. PY ◽  
E. DE LANGRE ◽  
P. HEMON ◽  
...  

In order to investigate the possibility of modelling plant motion at the landscape scale, an equation for crop plant motion, forced by an instantaneous velocity field, is introduced in a large-eddy simulation (LES) airflow model, previously validated over homogeneous and heterogeneous canopies. The canopy is simply represented as a poroelastic continuous medium, which is similar in its discrete form to an infinite row of identical oscillating stems. Only one linear mode of plant vibration is considered. Two-way coupling between plant motion and the wind flow is insured through the drag force term. The coupled model is validated on the basis of a comparison with measured movements of an alfalfa crop canopy. It is also compared with the outputs of a linear stability analysis. The model is shown to reproduce the well-known phenomenon of ‘honami’ which is typical of wave-like crop motions on windy days. The wavelength of the main coherent waving patches, extracted using a bi-orthogonal decomposition (BOD) of the crop velocity fields, is in agreement with that deduced from video recordings. The main spatial and temporal characteristics of these waving patches exhibit the same variation with mean wind velocity as that observed with the measurements. However they differ from the coherent eddy structures of the wind flow at canopy top, so that coherent waving patches cannot be seen as direct signatures of coherent eddy structures. Finally, it is shown that the impact of crop motion on the wind dynamics is negligible for current wind speed values. No lock-in mechanism of coherent eddy structures on plant motion is observed, in contradiction with the linear stability analysis. This discrepancy may be attributed to the presence of a nonlinear saturation mechanism in LES.


2011 ◽  
Vol 139 (2) ◽  
pp. 444-456 ◽  
Author(s):  
Jordan T. Dawe ◽  
Philip H. Austin

Abstract Direct calculations of the entrainment and detrainment of air into and out of clouds require knowledge of the relative velocity difference between the air and the cloud surface. However, a discrete numerical model grid forces the distance moved by a cloud surface over a time step to be either zero or the width of a model grid cell. Here a method for the subgrid interpolation of a cloud surface on a discrete numerical model grid is presented. This method is used to calculate entrainment and detrainment rates for a large-eddy simulation (LES) model, which are compared with rates calculated via the direct flux method of Romps. The comparison shows good agreement between the two methods as long as the model clouds are well resolved by the model grid spacing. This limitation of this technique is offset by the ability to resolve fluxes on much finer temporal and spatial scales, making it suitable for calculating entrainment and detrainment profiles for individual clouds.


Sign in / Sign up

Export Citation Format

Share Document