Enhancing mortar strengths by ternary geopolymer binder of metakaolin, slag, and palm ash

2017 ◽  
Vol 35 (5) ◽  
pp. 438-455 ◽  
Author(s):  
Ali Mohamed Ali Aboshia ◽  
Riza Atiq Rahmat ◽  
Muhammad Fauzi Mohd Zain ◽  
Amiruddin Ismail

Purpose The purpose of this paper is to develop an alternative new ternary geopolymer mortar (MKSP) to resolve a traditional mortar problem which exhibits several disadvantages, including poor strengths and surface microcracks and the CO2 air pollution. Design/methodology/approach The MKSP ternary binder was produced using metakaolin (MK), slag (S), and palm oil fuel ash (POFA) activated with an alkaline mixture of sodium silicate (Na2SiO3) and 10 M NaOH in a mass ratio of 2.5. Seven different mix proportions of MK, slag, and POFA were used to fabricate MKSP mortars. The water-to-binder ratio was varied between 0.4 and 0.5. The mortars were heat cured for 2 h at 80°C and then aged in air. Flexural stress and strain, mortars flow and compressive strength were tested. Furthermore, the mortars were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) analyses. Findings The results showed that the sample MKSP6, which contained 40 percent MK, 40 percent slag, and 20 percent POFA, exhibited high compressive strength (52 MPa) without any cracks and flexural strength (6.9 MPa) at 28 days after being cured for 2 h at 80°C; however, the MKSP7 mortar with optimal strength of 55 MPa showed some surface cracks . Further, the results of the XRD, SEM, and FTIR analyses indicated that the MKSP mortars primarily consisted of a crystalline (Si+Al) phase (70 percent) and a smaller amorphous (Si+Ca) phase (30 percent). Research limitations/implications The MKSP ternary geopolymer mix has three limitations as an importance of heat curing for development early strength, POFA content less than 20 percent to gain high normal strength and delaying the sitting time by controlling the slag content or the alkali activator type. Practical implications The use of geopolymer materials binder in a real building is limited and it still under research, Thus, the first model of real applied geopolymer cement in 2008 was the E-Crete model that formed by Zeobond company Australia to take the technology of geopolymer concrete to reality. Zeobond Pty Ltd was founded by Professor Jannie S.J. van (van Deventer et al., 2013), it was used to product precast concrete for the building structure. The second model was PYRAMENT model in 2002 by American cement manufacturer Lone Star Industries which was produced from the development carried out on inorganic alumino-silicate polymers called geopolymer (Palomo et al., 1999). In 2013 the third model was Queensland’s University GCI building with three suspended floors made from structural geopolymer concrete containing slag/fly ash-based geopolymer (Pathak, 2016). In Australia, 2014, the newly completed Brisbane West Wellcamp airport becomes the greenest airport in the world. Cement-free geopolymer concrete was used to save more than 6,600 tons of carbon emissions in the construction of the airport. Therefore, the next century will see cement companies developing alternative binders that are more environmentally friendly from a sustainable development point of view. Originality/value Production of new geopolymer binder of mortar as alternative to traditional cement binder with high early and normal strength from low cost waste materials, less potential of cracking, less energy consumption need and low carbon dioxide emission.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Suresh Kumar Arunachalam ◽  
Muthukannan Muthiah ◽  
Kanniga Devi Rangaswamy ◽  
Arunkumar Kadarkarai ◽  
Chithambar Ganesh Arunasankar

Purpose Demand for Geopolymer concrete (GPC) has increased recently because of its many benefits, including being environmentally sustainable, extremely tolerant to high temperature and chemical attacks in more dangerous environments. Like standard concrete, GPC also has low tensile strength and deformation capacity. This paper aims to analyse the utilization of incinerated bio-medical waste ash (IBWA) combined with ground granulated blast furnace slag (GGBS) in reinforced GPC beams and columns. Medical waste was produced in the health-care industry, specifically in hospitals and diagnostic laboratories. GGBS is a form of industrial waste generated by steel factories. The best option to address global warming is to reduce the consumption of Portland cement production and promote other types of cement that were not a pollutant to the environment. Therefore, the replacement in ordinary Portland cement construction with GPC is a promising way of reducing carbon dioxide emissions. GPC was produced due to an alkali-activated polymeric reaction between alumina-silicate source materials and unreacted aggregates and other materials. Industrial pollutants such as fly ash and slag were used as raw materials. Design/methodology/approach Laboratory experiments were performed on three different proportions (reinforced cement concrete [RCC], 100% GGBS as an aluminosilicate source material in reinforced geopolymer concrete [GRGPC] and 30% replacement of IBWA as an aluminosilicate source material for GGBS in reinforced geopolymer concrete [IGRGPC]). The cubes and cylinders for these proportions were tested to find their compressive strength and split tensile strength. In addition, beams (deflection factor, ductility factor, flexural strength, degradation of stiffness and toughness index) and columns (load-carrying ability, stress-strain behaviour and load-deflection behaviours) of reinforced geopolymer concrete (RGPC) were studied. Findings As shown by the results, compared to Reinforced Cement Concrete (RCC) and 100% GGBS based Reinforced Geopolymer Concrete (GRGPC), 30% IBWA and 70% GGBS based Reinforced Geopolymer Concrete (IGRGPC) (30% IBWA–70% GGBS reinforced geo-polymer concrete) cubes, cylinders, beams and columns exhibit high compressive strength, tensile strength, flexural strength, load-carrying ability, ultimate strength, stiffness, ductility and deformation capacity. Originality/value All the results were based on the experiments done in this research. All the result values obtained in this research are higher than the theoretical values.


2020 ◽  
Vol 38 (11A) ◽  
pp. 1706-1716
Author(s):  
Wasan I. Khalil ◽  
Qias J. Frayyeh ◽  
Mahmood F. Ahmed

The purpose of this work is to investigate the possibility to recycled and reused of waste clay brick and waste plastic as constituents in the production of green Geopolymer concrete paving bricks. Powder of clay brick waste (WBP) was used as a partial replacement of Metakaolin (MK) in Geopolymer binder. Moreover, recycled clay brick waste aggregate (BA) and plastic waste aggregate (PL) were incorporated as coarse aggregate in mixtures of Metakaolin based Geopolymer concrete (MK-GPC) pavement bricks. Six types of mixtures were prepared and cast as pavement bricks with dimensions of 150×150×100 mm. All samples have been tested for compressive strength, water absorption and abrasion resistance at age of 28 days; and compared the results with the requirements of Iraqi specification No.1606-2006. The MK-GPC pavement bricks present a compressive strength of 31-47MPa, water absorption of 3.66% to5.32% and abrasion resistance with groove length between 21.78mm to 18.91 mm. These types of pavement bricks are classified as a medium to light capacity for weight loading, and it is possible to be used in wide range of paving applications, especially in aggressive wearing environment.


Author(s):  
S. Nagajothi ◽  
S. Elavenil

AbstractGeopolymer concrete is a booming technology in the construction industry. Much research is occurring in geopolymer concrete, as it emits low carbon dioxide into the atmosphere, is eco-friendly material and is an alternative for cement. This research mainly focuses on the use of fly ash based geopolymer concrete in ambient curing conditions and the use of manufactured sand due to the scarcity of natural sand. Mainly studies have evolved on the workability, setting time and compressive strength by the effect of ground granulated blast furnace slag (GGBFS), manufactured sand (M-sand), alkaline activator solutions to binder ratio and the proportions of sodium silicate to sodium hydroxide (SS/SH) in geopolymer concrete and mortar. The experimental studies were carried out using nine geopolymer concrete mixes and the comparisons were made. The workability of concrete decreases by increasing the percentage of GGBFS, M-sand and the proportions of SS/SH whereas workability of concrete increases when increasing the alkaline liquid to binder ratio. The compressive strength of geopolymer mortar and concrete increases when the percentage of GGBFS and M-sand is increased, and it decreases by increasing the alkaline liquid content. There is no change in strength by decreasing the proportions of SS/SH.


2011 ◽  
Vol 339 ◽  
pp. 452-457 ◽  
Author(s):  
Mohd Azreen Mohd Ariffin ◽  
Mohd Warid Hussin ◽  
Muhammad Aamer Rafique Bhutta

Geopolymer concrete is a type of amorphous alumino-silicate cementitious material. Geopolymer can be polymerized by polycondensation reaction of geopolymeric precursor and alkali polysilicates. Compared to conventional cement concrete, the production of geopolymer concrete has a relative higher strength, excellent volume stability and better durability. This paper presents the mix design and compressive strength of geopolymer concrete manufactured from the blend of palm oil fuel ash (POFA) and pulverized fuel ash (PFA) as full replacement of cement with a combination of sodium silicate and sodium hydroxide solution used as alkaline liquid. The density and strength of the geopolymer concrete with various PFA: POFA ratios of 0:100, 30:70, 50:50 and 70:30 together with sodium silicate to sodium hydroxide solution by mass at 2.5 and 1.0, are investigated. The concentrations of alkaline solution used are 14 Molar and 8 Molar. Tests were carried out on 100x100x100 mm cube geopolymer concrete specimens. Specimens were cured at room temperature and heat curing at 60°C and 90°C for 24 hours, respectively. The effects of mass ratios of PFA: POFA, the alkaline solution to PFA: POFA, ratio and concentration of alkaline solution on fresh and hardened properties of concrete are examined. The results revealed that as PFA: POFA mass ratio increased the workability and compressive strength of geopolymer concrete are increased, the ratio and concentration of alkaline solution increased, the compressive strength of geopolymer concrete increases with regards to curing condition.


2015 ◽  
Vol 6 (2) ◽  
pp. 23-33 ◽  
Author(s):  
Mohd Azreen Mohd Ariffin ◽  
Mohd Warid Hussin

 Chloride attack on concrete is a mechanism of deterioration which causes corrosion of steel reinforcement. Geopolymer, an alternative aluminosilicate binder material, has attracted attention for its structural and durability performance as well as for environmental benefits in reducing the CO2 emissions associated with concrete production. However, the understanding of its behaviour in the chloride resistance of geopolymer concrete especially from mixtures of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) is scarce. In this study, geopolymer concrete using blended ashes from agro-industrial waste were tested for chloride content using ASTM 1543-10a (Standard Test Method for Determining the Penetration of Chloride Ion into Concrete). The geopolymer concrete samples were prepared using a mix of the PFA and POFA as the main binder components at the range of alkaline/binder ratio of 0.4 together mixed with coarse and fine aggregates. The ambient temperature (26-30°C) of curing regimes was used. The specimens were cast in 100mm3 molds. After achieving the targeted compressive strength (25-30 MPa), the specimens were immersed for 18 months to 2.5% solution of sodium chloride (NaCl). The normal OPC concrete with similar compressive strength were also prepared for direct comparison. X-ray diffraction (XRD), Fourier Transformed Infrared Spectrometer (FTIR), Thermogravimetry analyser (TGA-DTG) and Field Emission Scanning electron microscopy images with energy dispersive X-ray (FESEM-EDX) were performed to analyze the microstructural characterisation of the materials. In particular, geopolymer concrete had shown a better resistance to chloride penetration as compared to OPC concrete


2013 ◽  
Vol 651 ◽  
pp. 168-173 ◽  
Author(s):  
Sarathi Deb Partha ◽  
Nath Pradip ◽  
Kumar Sarker Prabir

Geopolymer is a binder that can act as an alternative of Portland cement. Geopolymers use by-product substances such as fly ash, and can help reduce carbon dioxide emission of concrete production. This paper presents the results of a study on the fly ash based geopolymer concrete suitable for curing at ambient temperature. To activate the fly ash, a combination of sodium hydroxide and sodium silicate solutions was used. The setting and hardening of geopolymer concrete were obtained by blending blast furnace slag with fly ash instead of using heat curing. Ground granulated blast furnace slag (GGBFS) was used at the rate of 10% or 20 % of the total binder. The tests conducted include compressive strength, tensile strength, flexure strength, sorptivity and volume of permeable voids (VPV) test. The geopolymer concrete compressive strength at 28 days varied from 27 to 47 MPa. Results indicated that the strength increased and water absorption decreased with the increase of the slag content in the geopolymer concrete. In general, blending of slag with fly ash in geopolymer concrete improved strength and permeation properties when cured in ambient temperature.


2019 ◽  
Vol 10 (4) ◽  
pp. 515-533
Author(s):  
Faeze Nejati ◽  
Samira Ahmadi ◽  
S.A. Edalatpanah

Purpose Modern construction methods have been developed with the goal of reducing construction time as much as possible, which results in some situations during construction and within the first few days after it, when concrete is subjected to exceptionally high loads. The precast concrete, which is the concrete in very early ages, may result in severe cracks or damages. In conventional construction projects, sometimes working with concrete, which had not reached its ultimate strength, is an unavoidable matter of fact. This paper aims to discuss these issues. Design/methodology/approach Researchers in the field of construction materials have done their best to make some changes in the different parts of the concrete in order to bring about reforms, based on the existing needs, and achieve new quality and primacy from concrete. One kind of concrete, the emergence of which dates back to many years ago, is self-compacting concrete. Thanks to its high efficiency for the parts with complex forms of high-density steel, this kind of concrete suggests new prospects. Findings This study aims at evaluating the effect of early loads on the 28-day compressive strength of concretes with zeolite and limestone powder under different curing conditions (wet or dry). In this regard, two self-compacting concrete mix designs with the same ratio of water to cementations materials and 0.4 percent and 10 percent zeolite have been considered; therefore, concrete cube samples with zeolite and limestone powder in different curing conditions at ages of three, one and seven days under preloading with 80–90 percent of compressive strength are damaged, and after curing in different conditions, their 28-day compressive strength is measured. According to the results, the recovery of the 28-day compressive strength of damaged samples, compared to that of intact samples, is possible in all curing conditions. The experiments that have been performed on concrete samples under dry and wet curing conditions show that the full recovery of compressive strength of damaged samples compared to that of intact ones happened only in preloaded samples at the age of one days, and in other ages (three and seven days) the 28-day strength reduction has occurred in damaged samples compared to the that in intact samples. The results of concrete samples with zeolite and without limestone powder at the age of one day indicate the greatest impact on other samples on the 28-day compressive strength of damaged samples compared to that of intact ones, occurring under dry condition. Originality/value This research analyzed and studied the influence under wet and dry curing conditions and the presence of limestone powder and zeolite fillers in recovering of the 28-day compressive strength of preloaded concrete samples at early stages (one, three and seven days) after the construction of the concrete.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253006
Author(s):  
Hemn Unis Ahmed ◽  
Ahmed Salih Mohammed ◽  
Azad A. Mohammed ◽  
Rabar H. Faraj

Geopolymer concrete is an inorganic concrete that uses industrial or agro by-product ashes as the main binder instead of ordinary Portland cement; this leads to the geopolymer concrete being an eco-efficient and environmentally friendly construction material. A variety of ashes used as the binder in geopolymer concrete such as fly ash, ground granulated blast furnace slag, rice husk ash, metakaolin ash, and Palm oil fuel ash, fly ash was commonly consumed to prepare geopolymer concrete composites. The most important mechanical property for all types of concrete composites, including geopolymer concrete, is the compressive strength. However, in the structural design and construction field, the compressive strength of the concrete at 28 days is essential. Therefore, achieving an authoritative model for predicting the compressive strength of geopolymer concrete is necessary regarding saving time, energy, and cost-effectiveness. It gives guidance regarding scheduling the construction process and removal of formworks. In this study, Linear (LR), Non-Linear (NLR), and Multi-logistic (MLR) regression models were used to develop the predictive models for estimating the compressive strength of fly ash-based geopolymer concrete (FA-GPC). In this regard, a comprehensive dataset consists of 510 samples were collected in several academic research studies and analyzed to develop the models. In the modeling process, for the first time, twelve effective variable parameters on the compressive strength of the FA-GPC, including SiO2/Al2O3 (Si/Al) of fly ash binder, alkaline liquid to binder ratio (l/b), fly ash (FA) content, fine aggregate (F) content, coarse aggregate (C) content, sodium hydroxide (SH)content, sodium silicate (SS) content, (SS/SH), molarity (M), curing temperature (T), curing duration inside ovens (CD) and specimen ages (A) were considered as the modeling input parameters. Various statistical assessments such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Scatter Index (SI), OBJ value, and the Coefficient of determination (R2) were used to evaluate the efficiency of the developed models. The results indicated that the NLR model performed better for predicting the compressive strength of FA-GPC mixtures compared to the other models. Moreover, the sensitivity analysis demonstrated that the curing temperature, alkaline liquid to binder ratio, and sodium silicate content are the most affecting parameter for estimating the compressive strength of the FA-GPC.


2020 ◽  
Vol 18 (6) ◽  
pp. 1615-1640
Author(s):  
Eric Asa ◽  
Monisha Shrestha ◽  
Edmund Baffoe-Twum ◽  
Bright Awuku

Purpose Environmental issues caused by the production of Portland cement have led to it being replaced by waste materials such as fly ash, which is more economical and safer for the environment. Also, fly ash is a material with sustainable properties. Therefore, this paper aims to focus on the development of sustainable construction materials using 100% high-calcium fly ash and potassium hydroxide (KOH)-based alkaline solution and study the engineering properties of the resulting fly ash-based geopolymer concrete. Laboratory tests were conducted to determine the mechanical properties of the geopolymer concrete such as compressive strength, flexural strength, curing time and slump. In phase I of the study, carbon nanotubes (CNTs) were added to determine their effect on the strength of the geopolymer mortar. The results derived from the experiments indicate that mortar and concrete made with 100% fly ash C require an alkaline solution to produce similar (comparable) strength characteristics as Portland cement concrete. However, it was determined that increasing the amount of KOH generates a considerable amount of heat causing the concrete to cure too quickly; therefore, it is notable to forming a proper bond was unable to form a stronger bond. This study also determined that the addition of CNTs to the mix makes the geopolymer concrete tougher than the traditional concrete without CNT. Design/methodology/approach Tests were conducted to determine properties of the geopolymer concrete such as compressive strength, flexural strength, curing time and slump. In Phase I of the study, CNTs were studied to determine their effect on the strength of the geopolymer mortar. Findings The results derived from the experiments indicate that mortar and concrete made with 100% fly ash C require an alkaline solution to produce the same strength characteristics as Portland cement concrete. However, it was determined that increasing the amount of KOH generates too much heat causing the concrete to cure too quickly; therefore, it is notable to forming a proper bond. This study also determined that the addition of CNTs to the mix makes the concrete tougher than concrete without CNT. Originality/value This study was conducted at the construction engineering and management concrete laboratory at North Dakota State University in Fargo, North Dakota. All the experiments were conducted and analyzed by the authors.


2020 ◽  
Vol 39 (3) ◽  
pp. 732-737
Author(s):  
S. Gambo ◽  
K. Ibrahim ◽  
A. Aliyu ◽  
A.G. Ibrahim ◽  
H. Abdulsalam

Due to the carbon dioxide emission arising from the production of cement, alternative concrete that is environmentally friendly such as metakaolin geopolymer concrete have been developed. However, the performance of metakaolin based geopolymer concrete (MKGC) when exposed to aggressive environment particularly elevated temperature has not been investigated. Therefore, this paper assessed the performance of MKGC exposed to elevated temperatures. MKGC cube specimens of grade 25 were produced using a mix ratio of 1:1.58:3.71.After preparing the specimens, they were placed in an electric oven at a temperature of 60oC for 24 hours. Thereafter, the specimens were stored in the laboratory at ambient temperature for 28 days. The specimens were then exposed to elevated temperatures of 200, 400, 600 and 800oC. After exposure to elevated temperatures, the MKGC specimens were subjected to compressive strength, water absorption and abrasion resistance tests. Results show that at 600 and 800oC, the MKGC lost a compressive strength of 59.69% and 71.71% respectively. Higher water absorption and lower abrasion resistance were also observed. Keywords: Cement, Compressive Strength, Metakaolin Concrete, Elevated Temperature.


Sign in / Sign up

Export Citation Format

Share Document