Determinants of rental strategy: short-term vs long-term rental strategy

2020 ◽  
Vol 13 (12) ◽  
pp. 3873-3894
Author(s):  
Sina Shokoohyar ◽  
Ahmad Sobhani ◽  
Anae Sobhani

Purpose Short-term rental option enabled via accommodation sharing platforms is an attractive alternative to conventional long-term rental. The purpose of this study is to compare rental strategies (short-term vs long-term) and explore the main determinants for strategy selection. Design/methodology/approach Using logistic regression, this study predicts the rental strategy with the highest rate of return for a given property in the City of Philadelphia. The modeling result is then compared with the applied machine learning methods, including random forest, k-nearest neighbor, support vector machine, naïve Bayes and neural networks. The best model is finally selected based on different performance metrics that determine the prediction strength of underlying models. Findings By analyzing 2,163 properties, the results show that properties with more bedrooms, closer to the historic attractions, in neighborhoods with lower minority rates and higher nightlife vibe are more likely to have a higher return if they are rented out through short-term rental contract. Additionally, the property location is found out to have a significant impact on the selection of the rental strategy, which emphasizes the widely known term of “location, location, location” in the real estate market. Originality/value The findings of this study contribute to the literature by determining the neighborhood and property characteristics that make a property more suitable for the short-term rental vs the long-term one. This contribution is extremely important as it facilitates differentiating the short-term rentals from the long-term rentals and would help better understanding the supply-side in the sharing economy-based accommodation market.

Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1692 ◽  
Author(s):  
Iván Silva ◽  
José Eugenio Naranjo

Identifying driving styles using classification models with in-vehicle data can provide automated feedback to drivers on their driving behavior, particularly if they are driving safely. Although several classification models have been developed for this purpose, there is no consensus on which classifier performs better at identifying driving styles. Therefore, more research is needed to evaluate classification models by comparing performance metrics. In this paper, a data-driven machine-learning methodology for classifying driving styles is introduced. This methodology is grounded in well-established machine-learning (ML) methods and literature related to driving-styles research. The methodology is illustrated through a study involving data collected from 50 drivers from two different cities in a naturalistic setting. Five features were extracted from the raw data. Fifteen experts were involved in the data labeling to derive the ground truth of the dataset. The dataset fed five different models (Support Vector Machines (SVM), Artificial Neural Networks (ANN), fuzzy logic, k-Nearest Neighbor (kNN), and Random Forests (RF)). These models were evaluated in terms of a set of performance metrics and statistical tests. The experimental results from performance metrics showed that SVM outperformed the other four models, achieving an average accuracy of 0.96, F1-Score of 0.9595, Area Under the Curve (AUC) of 0.9730, and Kappa of 0.9375. In addition, Wilcoxon tests indicated that ANN predicts differently to the other four models. These promising results demonstrate that the proposed methodology may support researchers in making informed decisions about which ML model performs better for driving-styles classification.


Kybernetes ◽  
2019 ◽  
Vol 49 (10) ◽  
pp. 2547-2567 ◽  
Author(s):  
Himanshu Sharma ◽  
Anu G. Aggarwal

Purpose The experiential nature of travel and tourism services has popularized the importance of electronic word-of-mouth (EWOM) among potential customers. EWOM has a significant influence on hotel booking intention of customers as they tend to trust EWOM more than the messages spread by marketers. Amid abundant reviews available online, it becomes difficult for travelers to identify the most significant ones. This questions the credibility of reviewers as various online businesses allow reviewers to post their feedback using nickname or email address rather than using real name, photo or other personal information. Therefore, this study aims to determine the factors leading to reviewer credibility. Design/methodology/approach The paper proposes an econometric model to determine the variables that affect the reviewer’s credibility in the hospitality and tourism sector. The proposed model uses quantifiable variables of reviewers and reviews to estimate reviewer credibility, defined in terms of proportion of number of helpful votes received by a reviewer to the number of total reviews written by him. This covers both aspects of source credibility i.e. trustworthiness and expertness. The authors have used the data set of TripAdvisor.com to validate the models. Findings Regression analysis significantly validated the econometric models proposed here. To check the predictive efficiency of the models, predictive modeling using five commonly used classifiers such as random forest (RF), linear discriminant analysis, k-nearest neighbor, decision tree and support vector machine is performed. RF gave the best accuracy for the overall model. Practical implications The findings of this research paper suggest various implications for hoteliers and managers to help retain credible reviewers in the online travel community. This will help them to achieve long term relationships with the clients and increase their trust in the brand. Originality/value To the best of authors’ knowledge, this study performs an econometric modeling approach to find determinants of reviewer credibility, not conducted in previous studies. Moreover, the study contracts from earlier works by considering it to be an endogenous variable, rather than an exogenous one.


Sensor Review ◽  
2018 ◽  
Vol 38 (2) ◽  
pp. 223-230
Author(s):  
Wenli Zhang ◽  
Fengchun Tian ◽  
An Song ◽  
Zhenzhen Zhao ◽  
Youwen Hu ◽  
...  

Purpose This paper aims to propose an odor sensing system based on wide spectrum for e-nose, based on comprehensive analysis on the merits and drawbacks of current e-nose. Design/methodology/approach The wide spectral light is used as the sensing medium in the e-nose system based on continuous wide spectrum (CWS) odor sensing, and the sensing response of each sensing element is the change of light intensity distribution. Findings Experimental results not only verify the feasibility and effectiveness of the proposed system but also show the effectiveness of least square support vector machine (LSSVM) in eliminating system errors. Practical implications Theoretical model of the system was constructed, and experimental tests were carried out by using NO2 and SO2. System errors in the test data were eliminated using the LSSVM, and the preprocessed data were classified by euclidean distance to centroids (EDC), k-nearest neighbor (KNN), support vector machine (SVM), LSSVM, respectively. Originality/value The system not only has the advantages of current e-nose but also realizes expansion of sensing array by means of light source and the spectrometer with their wide spectrum, high resolution characteristics which improve the detection accuracy and realize real-time detection.


2021 ◽  
Vol 7 ◽  
pp. e437
Author(s):  
Arushi Agarwal ◽  
Purushottam Sharma ◽  
Mohammed Alshehri ◽  
Ahmed A. Mohamed ◽  
Osama Alfarraj

In today’s cyber world, the demand for the internet is increasing day by day, increasing the concern of network security. The aim of an Intrusion Detection System (IDS) is to provide approaches against many fast-growing network attacks (e.g., DDoS attack, Ransomware attack, Botnet attack, etc.), as it blocks the harmful activities occurring in the network system. In this work, three different classification machine learning algorithms—Naïve Bayes (NB), Support Vector Machine (SVM), and K-nearest neighbor (KNN)—were used to detect the accuracy and reducing the processing time of an algorithm on the UNSW-NB15 dataset and to find the best-suited algorithm which can efficiently learn the pattern of the suspicious network activities. The data gathered from the feature set comparison was then applied as input to IDS as data feeds to train the system for future intrusion behavior prediction and analysis using the best-fit algorithm chosen from the above three algorithms based on the performance metrics found. Also, the classification reports (Precision, Recall, and F1-score) and confusion matrix were generated and compared to finalize the support-validation status found throughout the testing phase of the model used in this approach.


2019 ◽  
Vol 9 (12) ◽  
pp. 2544 ◽  
Author(s):  
Hua ◽  
Chen ◽  
Zhang ◽  
Liu ◽  
Wen

Previous studies have attempted to find autonomic differences of the cardiac system between the congestive heart failure (CHF) disease and healthy groups using a variety of algorithms of pattern recognition. By comparing previous literature, we have found that there are two shortcomings: 1) Previous studies have focused on improving the accuracy of models, but the number of features used has mostly exceeded 10, leading to poor generalization performance; 2) Previous works rarely distinguish the severity levels of CHF disease. In order to make up for these two shortcomings, we proposed two models: model A was used for distinguishing CHF patients from the normal people; model B was used for diagnosing the four severity levels of CHF disease. Based on long-term heart rate variability (HRV) (40000 intervals–8h) signals, we extracted linear and non-linear features from the inter-beat-interval (IBI) series. After that, the sequence forward selection algorithm (SFS) reduced the feature dimension. Finally, models with the best performance were selected through the leave-one-subject-out validation. For a total of 113 samples of the dataset, we applied the support vector machine classifier and five HRV features for CHF discrimination and obtained an accuracy of 97.35%. For a total of 41 samples of the dataset, we applied k-nearest-neighbor (K = 1) classifier and four HRV features for diagnosing four severity levels of CHF disease and got an accuracy of 87.80%. The contribution in this work was to use the fewer features to optimize our models by the leave-one-subject-out validation. The relatively good generalization performance of our models indicated their value in clinical application.


2016 ◽  
Vol 58 (2) ◽  
pp. 216-230 ◽  
Author(s):  
Mahdi Salehi ◽  
Mahmoud Mousavi Shiri ◽  
Mohammad Bolandraftar Pasikhani

Purpose – Financial distress is the most notable distress for companies. During the past four decades, predicting corporate bankruptcy and financial distress has become a significant concern for the various stakeholders in firms. This paper aims to predict financial distress of Iranian firms, with four techniques: support vector machines, artificial neural networks (ANN), k-nearest neighbor and na i ve bayesian classifier by using accounting information of the firms for two years prior to financial distress. Design/methodology/approach – The distressed companies in this study are chosen based on Article 141 of Iranian Commercial Codes, i.e. accumulated losses exceeds half of equity, based on which 117 companies qualified for the current study. The research population includes all the companies listed on Tehran Stock Exchange during the financial period from 2011-2012 to 2013-2014, that is, three consecutive periods. Findings – By making a comparison between performances of models, it is concluded that ANN outperforms other techniques. Originality/value – The current study is almost the first study in Iran which used such methods to analyzing the data. So, the results may be helpful in the Iranian condition as well for other developing nations.


Sensor Review ◽  
2019 ◽  
Vol 39 (1) ◽  
pp. 99-106 ◽  
Author(s):  
Wei Zhang ◽  
Xianghong Hua ◽  
Kegen Yu ◽  
Weining Qiu ◽  
Shoujian Zhang ◽  
...  

Purpose This paper aims to introduce the weighted squared Euclidean distance between points in signal space, to improve the performance of the Wi-Fi indoor positioning. Nowadays, the received signal strength-based Wi-Fi indoor positioning, a low-cost indoor positioning approach, has attracted a significant attention from both academia and industry. Design/methodology/approach The local principal gradient direction is introduced and used to define the weighting function and an average algorithm based on k-means algorithm is used to estimate the local principal gradient direction of each access point. Then, correlation distance is used in the new method to find the k nearest calibration points. The weighted squared Euclidean distance between the nearest calibration point and target point is calculated and used to estimate the position of target point. Findings Experiments are conducted and the results indicate that the proposed Wi-Fi indoor positioning approach considerably outperforms the weighted k nearest neighbor method. The new method also outperforms support vector regression and extreme learning machine algorithms in the absence of sufficient fingerprints. Research limitations/implications Weighted k nearest neighbor approach, support vector regression algorithm and extreme learning machine algorithm are the three classic strategies for location determination using Wi-Fi fingerprinting. However, weighted k nearest neighbor suffers from dramatic performance degradation in the presence of multipath signal attenuation and environmental changes. More fingerprints are required for support vector regression algorithm to ensure the desirable performance; and labeling Wi-Fi fingerprints is labor-intensive. The performance of extreme learning machine algorithm may not be stable. Practical implications The new weighted squared Euclidean distance-based Wi-Fi indoor positioning strategy can improve the performance of Wi-Fi indoor positioning system. Social implications The received signal strength-based effective Wi-Fi indoor positioning system can substitute for global positioning system that does not work indoors. This effective and low-cost positioning approach would be promising for many indoor-based location services. Originality/value A novel Wi-Fi indoor positioning strategy based on the weighted squared Euclidean distance is proposed in this paper to improve the performance of the Wi-Fi indoor positioning, and the local principal gradient direction is introduced and used to define the weighting function.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242269
Author(s):  
Diaa Salama AbdELminaam ◽  
Abdulrhman M. Almansori ◽  
Mohamed Taha ◽  
Elsayed Badr

The development of biometric applications, such as facial recognition (FR), has recently become important in smart cities. Many scientists and engineers around the world have focused on establishing increasingly robust and accurate algorithms and methods for these types of systems and their applications in everyday life. FR is developing technology with multiple real-time applications. The goal of this paper is to develop a complete FR system using transfer learning in fog computing and cloud computing. The developed system uses deep convolutional neural networks (DCNN) because of the dominant representation; there are some conditions including occlusions, expressions, illuminations, and pose, which can affect the deep FR performance. DCNN is used to extract relevant facial features. These features allow us to compare faces between them in an efficient way. The system can be trained to recognize a set of people and to learn via an online method, by integrating the new people it processes and improving its predictions on the ones it already has. The proposed recognition method was tested with different three standard machine learning algorithms (Decision Tree (DT), K Nearest Neighbor(KNN), Support Vector Machine (SVM)). The proposed system has been evaluated using three datasets of face images (SDUMLA-HMT, 113, and CASIA) via performance metrics of accuracy, precision, sensitivity, specificity, and time. The experimental results show that the proposed method achieves superiority over other algorithms according to all parameters. The suggested algorithm results in higher accuracy (99.06%), higher precision (99.12%), higher recall (99.07%), and higher specificity (99.10%) than the comparison algorithms.


Sign in / Sign up

Export Citation Format

Share Document