Effects of structural parameters of oil groove on transmission characteristics of hydro-viscous clutch based on viscosity-temperature property of oil film

2017 ◽  
Vol 69 (5) ◽  
pp. 690-700 ◽  
Author(s):  
Fangwei Xie ◽  
Diancheng Wu ◽  
Yaowen Tong ◽  
Bing Zhang ◽  
Jie Zhu

Purpose The purpose of this paper is to study the influence of structural parameters of oil groove (such as central angle number, depth and so on) on pressure, flow, load capacity and transmitted torque between friction pairs of hydro-viscous clutch. Design/methodology/approach According to the working process of friction pairs of hydro-viscous clutch, mathematical models of hydrodynamic load capacity and torque transmitted by the oil film were built based on viscosity-temperature property. Then analytical solutions of pressure, flow, load capacity and transmitted torque were obtained; effects of central angle of oil groove zone and friction contact zone, oil film thickness, number of oil grooves on pressure, flow, load capacity and torque were studied theoretically. Findings The research found that the central angle of oil groove zone, number of oil grooves and oil groove depth have similar effects on flow, which means that with the increase of central angle, number or depth of oil grooves, the flow also increases; pressure in friction contact zone and oil groove zone drops along radial direction, whereas its value in oil groove zone is higher. With the increase of the central angle of oil groove zone, pressure in friction contact zone and friction contact zone rises, and the load capacity increases, whereas the transmitted torque drops. Number of oil grooves has little effect on load capacity. When the oil film thickness increases, its flow increases accordingly, whereas the pressure, load capacity and transmitted torque drops. Meanwhile, the transmitted torque decreases with the increase of number of oil grooves, whereas the oil groove depth nearly has no effects on transmitted torque. Originality/value In this paper, mathematical models of hydrodynamic load capacity and torque transmitted by oil film were built based on viscosity-temperature property in the working process of hydro-viscous clutch, and their analytical solutions were obtained; effects of structural parameters of oil groove on transmission characteristics of hydro-viscous clutch based on viscosity-temperature property were revealed. The research results are of great value to the theory development of hydro-viscous drive technology, the design of high-power hydro-viscous clutch and relative control strategy.

2016 ◽  
Vol 68 (3) ◽  
pp. 349-360 ◽  
Author(s):  
Amit Singla ◽  
Amit Chauhan

Purpose The current trend of modern industry is to use machineries which rotate at high speed along with the capability of carrying heavy rotor loads. This paper aims at static thermal analysis of two different profiles of non-circular journal bearings – a true elliptical bearing and orthogonal bearing. Design/methodology/approach The Reynolds equation has been solved through finite difference method to compute the oil film pressure. Parabolic temperature profile approximation technique has been used to solve the energy equation and thus used for computation of various bearing performance characteristics such as thermo-hydrodynamic oil film pressure, temperature, load capacity, Sommerfeld number and power loss characteristics across the bearing. The effect of ellipticity ratio on the bearing performance characteristics has also been obtained for both the elliptical and vertical offset bearing using three different commercially available grades of oil (Hydrol 32, 68 and 100). Findings It has been observed that the thermo-hydrodynamic pressure and temperature rise of the oil film is less in orthogonal bearing as compared to the true elliptical bearing for same operating conditions. The effect of ellipticity ratio of non-circularity on bearing performance parameters have been observed to be less in case of elliptical bearing as compared to orthogonal bearing. It has been concluded that though the rise in oil film temperature is high for true elliptical bearing, but still it should be preferred over orthogonal profile under study, as it has comparably good load-carrying capacity. Originality/value The performance parametric analysis will help the designers to select such kind of non-circular journal bearing for various applications.


2020 ◽  
Vol 72 (5) ◽  
pp. 695-701
Author(s):  
Mingyu Zhang ◽  
Jing Wang ◽  
Peiran Yang ◽  
Zhaohua Shang ◽  
Yi Liu ◽  
...  

Purpose This paper aims to study the influence of the dimension change of bush-pin on the pressure, oil film thickness, temperature rise and traction coefficient in contact zone by using a thermal elastohydrodynamic lubrication (EHL) model for finite line contact. Concretely, the effects of the equivalent curvature radius of the bush and the pin, and the length of the bush are investigated. Design/methodology/approach In this paper, the contact between the bush and pin is simplified as finite line contact. The lubrication state is studied by numerical simulation using steady-state line contact thermal EHL. A constitutive equation Ree–Eyring fluid is used in the calculations. Findings It is found that by selecting an optimal equivalent radius of curvature and prolonging the bush length can improve the lubrication state effectively. Originality/value Under specific working conditions, there exists an optimal equivalent radius to maximize the minimum oil film thickness in the contact zone. The increase of generatrix length will weaken the stress concentration effect in the rounded corner area at both ends of the bush, which can improve the wear resistance of chain. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2019-0448.


2018 ◽  
Vol 70 (9) ◽  
pp. 1657-1663
Author(s):  
Qingrui Meng ◽  
Zhao Chenghao ◽  
Tian Zuzhi

Purpose Friction pairs of the hydro-viscous drive speed regulating start device should be designed based on the rated torque. To obtain design basis of the rated torque of the hydro-viscous drive speed regulating start device, studies on effect of torque ratio (a ratio of the load torque to the rated torque) on speed regulating start were carried out theoretically and experimentally. Design/methodology/approach Under different torque ratio, the modified Reynolds, the thermal energy and the viscosity-temperature equations were solved simultaneously by using finite element method to reveal variation laws of the oil film load capacity and torque transmission during the starting process. Then, speed regulating start experiments were carried out to study the following performance of the output speed. Findings The results show that oil film thickness decreases with the increase of the torque ratio; when oil film thickness is less than 0.05 mm, oil film temperature increases rapidly with the decrease of oil film thickness, which eventually deteriorates performance of the speed regulating start; when the torque ratio decreases to about 0.3, output speed shows a better following performance. Originality/value It indicates that, to acquire a better speed regulating start, the rated torque of the hydro-viscous drive speed regulating start device should not be less than three times of the load torque. Achievements of this work provide theoretical basis for optimal design of the friction pairs of the hydro-viscous drive speed regulating start device.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lei Yin ◽  
Xiaolin Zheng ◽  
Dongxing Tang ◽  
Yanfeng Han ◽  
Rui Zhao ◽  
...  

Purpose This study aims to develop a new method to treat the numerical singularity at the critical nodes of two skew coordinates, and optimize the leakage of micro herringbone grooved journal bearings (MHGJBs) with this method. Design/methodology/approach A side leakage numerical algorithm is proposed by using the skew meshes with a virtual node (SMVN) method to evaluate the effects of groove angle, bank/groove ratio, groove depth and groove number on load capacity, friction and side leakage of MHGJB. Findings The SMVN method is effective in treating the numerical singularity at the critical nodes of two skew coordinates. Besides, a group of optimized parameters of micro herringbone groove is obtained which can not only minimize the side leakage but also improve the load capacity and friction force. Originality/value A virtual node method was proposed, which can significantly improve the calculation accuracy in the side leakage model.


2018 ◽  
Vol 70 (9) ◽  
pp. 1745-1756
Author(s):  
Fangwei Xie ◽  
Xinjian Guo ◽  
Diancheng Wu ◽  
Bing Zhang ◽  
Xudong Zheng ◽  
...  

Purpose In this paper, a kind of an oil groove structure which could improve the transmission torque of an oil film was designed, i.e. the width and depth of oil groove gradually decrease with the increase in the radius. Design/methodology/approach Effects of the structural parameters of the oil groove on the hydro-viscous drive (HVD) characteristics with variable rotational speed were investigated by means of numerical calculation. Findings Research results show that with the decrease of the width and depth of the oil groove at the outer diameter, transmission torque increases, while the temperature is almost unchanged. Keeping the effective area unchanged, comparing the transmitted torque under the oil groove angle θ2 = 0.5° and θ2 = 4.5°, the former was almost 200 per cent of the latter; the torque transmitted with h2 = 0.05 mm was almost 150 per cent of that with h2 = 0.2 mm. Originality/value In this paper, the authors analyze the friction surface of the friction plate between the oil groove, oil distribution and oil film transfer torque from the oil groove structure parameters and found methods to improve the transmission torque. For the first time, the influence of the structural parameters of oil groove on the characteristics of HVD was studied under the condition of variable rotational speed, and a better method to improve the transmission torque was proposed.


2020 ◽  
Vol 72 (7) ◽  
pp. 961-967 ◽  
Author(s):  
Ka Han ◽  
Junning Li ◽  
Qian Wang ◽  
Wuge Chen ◽  
Jiafan Xue

Purpose The purpose of this study is to reveal the tribological performance of the textured rolling bearing. Design/methodology/approach In the present study, the oil film pressure distribution and load capacity analysis method are established, which integrate the micro-texture model and Hydrodynamic lubrication (HL) methods. The tribological performances of the textured rolling bearing under the various working condition, texture dimension and texture type are investigated systematically. Findings The results show that the oil film load capacity increases with the increase in the texture size. As the texture depth increases, the oil film load capacity increases first and then decreases, and then the load capacity is the largest at the texture depth range of 3 to 5 µm. In addition, the oil film load capacity of the matching pairs, such as Si4N3-Si4N3, GCr15- Si4N3 and GCr15-GCr15 are compared; the results show that the cases of using ceramic material can improve oil film load capacity of textured rolling bearing. Originality/value The current manuscript can be useful for supporting the reliability and life research of textured rolling bearing. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-02-2020-0055


2015 ◽  
Vol 67 (4) ◽  
pp. 320-327 ◽  
Author(s):  
Qingrui Meng

Purpose – The purpose of this paper is to reveal the effect of starting time on hydro-viscous drive speed regulating start. Design/methodology/approach – The modified transient Reynolds equation, thermal energy equation and temperature–viscosity equation were solved simultaneously by using finite element method. And then variations of the oil film load capacity, variations of temperature and variations of the torque generated by the oil film during the starting process were obtained. Findings – The results show that during the starting process, both the oil film load capacity and the temperature show an upward trend, the torque increases during the beginning period and then decreases during the latter part of the starting process. When the starting time is less than 60 s, variations of the oil film load capacity and temperature show fluctuations, which decrease with the starting time. For any output speed, the corresponding oil film load capacity, temperature and torque decrease with the starting time, and the decreasing amplitude also decreases with the starting time. Originality/value – This paper indicates that the starting time can be set to 60-90 s to obtain a perfect starting process. The simulation results are verified by the speed regulating start experiments. Research findings of this work provide theoretical basis for the design and practical application of the hydro-viscous drive equipments.


2019 ◽  
Vol 72 (1) ◽  
pp. 79-85
Author(s):  
Zhibao Li ◽  
Fangwei Xie ◽  
Junyu Sun ◽  
Jie Zhu ◽  
Xudong Zheng ◽  
...  

Purpose The purpose of this paper is to study the temperature characteristics of hydro-viscous clutch with different structure of friction disks and obtain the distribution of film temperature. Design/methodology/approach The mathematical model of oil film between friction disks with radial grooves is established. Based on the flow rate equation, the temperature rise equation of oil film is deduced. Considering two-phase flow, the temperature distribution in the oil shear stage and the effects of the ratio of inner radius to outer radius on film temperature rise is studied by using computational fluid dynamics (CFD) technology. Findings The results show that when input speed is constant, the increase in the ratio of inner to outer radius leads to an increase in the peak temperature and the decrease in the ratio results in a larger increasing rate of temperature. Originality/value These results are of interest for the study of hydro-viscous drive and its applications. This study can also provide a theoretical basis for the mechanism of temperature rise by considering the effect of two-phase flow.


2017 ◽  
Vol 69 (6) ◽  
pp. 995-1004 ◽  
Author(s):  
Zhixiang Song ◽  
Fei Guo ◽  
Ying Liu ◽  
Songtao Hu ◽  
Xiangfeng Liu ◽  
...  

Purpose This paper aims to present the slip/no-slip design in two-dimensional water-lubricated tilting pad thrust bearings (TPTBs) considering the turbulence effect and shifting of pressure centers. Design/methodology/approach A numerical model is established to analyze the slip condition and the effect of turbulence according to a Reynolds number defined in terms of the slip condition. Simulations are carried out for eccentrically and centrally pivoted bearings and the influence of different slip parameters is discussed. Findings A considerable enhancement in load capacity, as well as a reduction in friction, can be achieved by heterogeneous slip/no-slip surface designs for lubricated sliding contacts, especially for near parallel pad configurations. The optimized design largely depends on the pivot position. The load capacity increases by 174 per cent for eccentrically pivoted bearings and 159 per cent for centrally pivoted bearings for a suitable design. When slip zone locates at the middle of the radial direction or close to the inner edge, the performance of the TPTB is better. Research limitations/implications The simplification of slip effect on the turbulence (definition of Reynolds number) can only describe the trend of the increasing turbulence due to slip condition. The accurate turbulence expression considering the boundary slip needs further explorations. Originality/value The shifting of pressure center due to the slip/no-slip design for TPTBs is investigated in this study. The turbulence effect and influence of slip parameters is discussed for large water-lubricated bearings.


2018 ◽  
Vol 70 (1) ◽  
pp. 68-75 ◽  
Author(s):  
Jun-peng Shao ◽  
Guang-dong Liu ◽  
Xiao-dong Yu ◽  
Yan-qin Zhang ◽  
Xiu-li Meng ◽  
...  

Purpose The purpose of this paper is to describe a simulation and experimental research concerning the effect of recess depth on the lubrication performance of a hydrostatic thrust bearing by constant rate flow. Design/methodology/approach The computational fluid dynamics and finite volume method have been used to compute the lubrication characteristics of an annular recess hydrostatic thrust bearing with different recess depths. The performances are oil recess pressure, oil recess temperature and oil film velocity. The recess depth has been optimized. A test rig is established for testing the pressure field of the structure of hydrostatic thrust bearing after recess depth optimization, and experimental results show that experimental data are basically identical with the simulation results, which demonstrates the validity of the proposed numerical simulation method. Findings The results demonstrate that the oil film temperature decreases and the oil film pressure first increases and then decreases with an increase in the recess depth, but oil film velocity is constant. To sum up comprehensive lubrication performance, the recess depth of 3.5 mm is its optimal value for the annular recess hydrostatic thrust bearing. Originality/value The computed results indicate that to get an improved performance from a constant flow hydrostatic thrust bearing, a proper selection of the recess depth is essential.


Sign in / Sign up

Export Citation Format

Share Document