Real-Time Visualization in the Design Context

2007 ◽  
Vol 32 (2) ◽  
pp. 7-16
Author(s):  
Ming Tang ◽  
Dihua Yang

Having been a promising visualization tool since 1950s, ironically, virtual reality is not widely used in the architectural design and evaluation process due to several constrains, such as the high cost of equipments and advanced programming skills required. This paper described the collaboration between design computing courses and architecture design studios that have been taught at Savannah College of Art and Design (SCAD) in 2004 and 2005. These courses explored several practical methods to integrate Low Cost Virtual Reality Aided Design (LC-VRAD) in the architectural design process. As a summary of the collaboration, this paper refers to three main aspects: (1) How to use game engine to design an affordable VR system in the ordinary studio environment. (2) How to integrate VR, into the design process, not only as a visualization tool, but also as a design instrument. (3) How to evaluate different methods of representing architectural models based on the efficiency of workflow, rendering quality and users' feedback. Support by the Game and Interactive Design Department at SCAD, students in the School of Building Arts implemented two Low Cost VRAD methods in various design phases, starting from site analysis, schematic design, design development to the final presentation. Two popular game engines, Epic Game's Unreal engine and Director MX's Shockwave engine, were introduced to students to visualize their project in real-time. We discussed computer-aided design theories including the application of VR, as well as digital computing and human computer interaction. At the end of each quarter, feedbacks from students and faculties were collected and analyzed. These methods were revised and improved consistently across 2004 and 2005 academic year.

2019 ◽  
Vol 11 (1) ◽  
pp. 179-182
Author(s):  
Dorottya Szilágyi ◽  
Nándor Bakai

Abstract The following article summarizes a research with the intention to demonstrate the challenges that architecture students need to face throughout their design tasks. The study is also meant to contribute to the cognition of state-of-the-art methods that can help students with these emerging problems. The main source of information was a questionnaire. Students were asked about the duties they accomplish when completing a design, about their adopted design methods and about their thoughts on a future profession. As a complement, Interviews were conducted with professional architects from local studios. This allowed a deeper insight into the requirements that the two sides lay down for each other. The research charts how computer aided design could affect the difficulties that appear in the architectural design process.


2020 ◽  
Vol 64 (5) ◽  
pp. 50405-1-50405-5
Author(s):  
Young-Woo Park ◽  
Myounggyu Noh

Abstract Recently, the three-dimensional (3D) printing technique has attracted much attention for creating objects of arbitrary shape and manufacturing. For the first time, in this work, we present the fabrication of an inkjet printed low-cost 3D temperature sensor on a 3D-shaped thermoplastic substrate suitable for packaging, flexible electronics, and other printed applications. The design, fabrication, and testing of a 3D printed temperature sensor are presented. The sensor pattern is designed using a computer-aided design program and fabricated by drop-on-demand inkjet printing using a magnetostrictive inkjet printhead at room temperature. The sensor pattern is printed using commercially available conductive silver nanoparticle ink. A moving speed of 90 mm/min is chosen to print the sensor pattern. The inkjet printed temperature sensor is demonstrated, and it is characterized by good electrical properties, exhibiting good sensitivity and linearity. The results indicate that 3D inkjet printing technology may have great potential for applications in sensor fabrication.


Science Scope ◽  
2017 ◽  
Vol 041 (01) ◽  
Author(s):  
Nicholas Garafolo ◽  
Nidaa Makki ◽  
Katrina Halasa ◽  
Wondimu Ahmed ◽  
Kristin Koskey ◽  
...  

2021 ◽  
Vol 13 (3) ◽  
pp. 1081
Author(s):  
Yoon Kyung Lee

Technologies that are ready-to-use and adaptable in real time to customers’ individual needs are influencing the supply chain of the future. This study proposes a supply chain framework for an innovative and sustainable real-time fashion system (RTFS) between enterprises, designers, and consumers in 3D clothing production systems, using information communication technology, artificial intelligence (AI), and virtual environments. In particular, the RTFS is targeted at customers actively involved in product purchasing, personalising, co-designing, and manufacturing planning. The fashion industry is oriented towards 3D services as a service model, owing to the automation and democratisation of product customisation and personalisation processes. Furthermore, AI offers referral services to prosumers or/and customers and companies, and proposes individual designs with perfect styles and measurements using new 3D computer aided design and AI-based product design technologies for fashion and design companies and customers. Consequently, 3D fashion products in the RTFS supply chain are entirely digital, saving time and money with sampling and tracking capabilities, secured, and trusted with personalised service delivery.


Author(s):  
Antor Mahamudul Hashan ◽  
Abdullah Haidari ◽  
Srishti Saha ◽  
Titas Paul

Due to the rapid development of technology, the use of numerically controlled machines in the industry is increasing. The main idea behind this paper is computer-aided design (CAD) based low-cost computer numerical control 2D drawing robot that can accurately draw complex circuits, diagrams, logos, etc. The system is created using open-source hardware and software, which makes it available at a low cost. The open-source LibreCAD application has been used for computer-aided design. Geometric data of a CAD model is converted to coordinate points using the python-based F-Engrave application. This system uses the Arduino UNO board as a signal generator of the universal g-code sender without compromising the performance. The proposed drawing robot is designed as a low-cost robot for educational purposes and aims to increase the student's interest in robotics and computer-aided design (CAD) skills to the next level. The drawing robot structure has been developed, and it meets the requirements of low cost with satisfactory experimental results.


2010 ◽  
Vol 166-167 ◽  
pp. 297-302 ◽  
Author(s):  
Florina Moldovan ◽  
Valer Dolga

In this article is presented a short classification for walking robots that are based on leg locomotion and the main objectives that walking robots designers must achieve. The leg configuration of the walking robot is essential for obtaining a stable motion. Computer aided design process offers certain advantages for designers who attend to realize competitive products with fewer errors and in a short term. The aim of this article is to present the graphical results of the kinematic analysis of a new type of walking mechanism designed by Dutch physicist and sculptor Theo Jansen using Pro Engineer program and SAM, in order to compare the results.


Author(s):  
S. N. Trika ◽  
P. Banerjee ◽  
R. L. Kashyap

Abstract A virtual reality (VR) interface to a feature-based computer-aided design (CAD) system promises to provide a simple interface to a designer of mechanical parts, because it allows intuitive specification of design features such as holes, slots, and protrusions in three-dimensions. Given the current state of a part design, the designer is free to navigate around the part and in part cavities to specify the next feature. This method of feature specification also provides directives to the process-planner regarding the order in which the features may be manufactured. In iterative feature-based design, the existing part cavities represent constraints as to where the designer is allowed to navigate and place the new feature. The CAD system must be able to recognize the part cavities and enforce these constraints. Furthermore, the CAD system must be able to update its knowledge of part cavities when the new feature is added. In this paper, (i) we show how the CAD system can enforce the aforementioned constraints by exploiting the knowledge of part cavities and their adjacencies, and (ii) present efficient methods for updates of the set of part cavities when the designer adds a new feature.


2020 ◽  
Vol 10 (1) ◽  
pp. 8
Author(s):  
Carlos C. Cortes Torres ◽  
Ryota Yasudo ◽  
Hideharu Amano

The energy of real-time systems for embedded usage needs to be efficient without affecting the system’s ability to meet task deadlines. Dynamic body bias (BB) scaling is a promising approach to managing leakage energy and operational speed, especially for system-on-insulator devices. However, traditional energy models cannot deal with the overhead of adjusting the BB voltage; thus, the models are not accurate. This paper presents a more accurate model for calculating energy overhead using an analytical double exponential expression for dynamic BB scaling and an optimization method based on nonlinear programming with consideration of the real-chip parameter constraints. The use of the proposed model resulted in an energy reduction of about 32% at lower frequencies in comparison with the conventional model. Moreover, the energy overhead was reduced to approximately 14% of the total energy consumption. This methodology provides a framework and design guidelines for real-time systems and computer-aided design.


Sign in / Sign up

Export Citation Format

Share Document