scholarly journals Dimensional capability of selected 3DP technologies

2019 ◽  
Vol 25 (5) ◽  
pp. 915-924 ◽  
Author(s):  
Younss Ait Mou ◽  
Muammer Koc

Purpose This paper aims to report on the findings of an investigation to compare three different three-dimensional printing (3DP) or additive manufacturing technologies [i.e. fused deposition modeling (FDM), stereolithography (SLA) and material jetting (MJ)] and four different equipment (FDM, SLA, MJP 2600 and Object 260) in terms of their dimensional process capability (dimensional accuracy and surface roughness). It provides a comprehensive and comparative understanding about the level of attainable dimensional accuracy, repeatability and surface roughness of commonly used 3DP technologies. It is expected that these findings will help other researchers and industrialists in choosing the right technology and equipment for a given 3DP application. Design/methodology/approach A benchmark model of 5 × 5 cm with several common and challenging features, such as around protrusion and hole, flat surface, micro-scale ribs and micro-scale long channels was designed and printed repeatedly using four different equipment of three different 3DP technologies. The dimensional accuracy of the printed models was measured using non-contact digital measurement methods. The surface roughness was evaluated using a digital profilometer. Finally, the surface quality and edge sharpness were evaluated under a reflected light ZEISS microscope with a 50× magnification objective. Findings The results show that FDM technology with the used equipment results in a rough surface and loose dimensional accuracy. The SLA printer produced a smoother surface, but resulted in the distortion of thin features (<1 mm). MJ printers, on the other hand, produced comparable surface roughness and dimensional accuracy. However, ProJet MJP 3600 produced sharper edges when compared to the Objet 260 that produced round edges. Originality/value This paper, for the first time, provides a comprehensive comparison of three different commonly used 3DP technologies in terms of their dimensional capability and surface roughness without farther post-processing. Thus, it offers a reliable guideline for design consideration and printer selection based on the target application.

2021 ◽  
Vol 27 (11) ◽  
pp. 1-12
Author(s):  
Giovanni Gómez-Gras ◽  
Marco A. Pérez ◽  
Jorge Fábregas-Moreno ◽  
Guillermo Reyes-Pozo

Purpose This paper aims to investigate the quality of printed surfaces and manufacturing tolerances by comparing the cylindrical cavities machined in parts obtained by fused deposition modeling (FDM) with the holes manufactured during the printing process itself. The comparison focuses on the results of roughness and tolerances, intending to obtain practical references when making assemblies. Design/methodology/approach The experimental approach focuses on the comparison of the results of roughness and tolerances of two manufacturing strategies: geometric volumes with a through-hole and the through-hole machined in volumes that were initially printed without the hole. Throughout the study, both alternates are explained to make appropriate recommendations. Findings The study shows the best combinations of technological parameters, both machining and three-dimensional printing, which have been decisive for obtaining successful results. These conclusive results allow enunciating recommendations for use in the industrial environment. Originality/value This paper fulfills an identified need to study the dimensional accuracy of the geometries obtained by additive manufacturing, as no experimental evidence has been found of studies that directly address the problem of the FDM-printed part with geometric and dimensional tolerances and desirable surface quality for assembly.


2015 ◽  
Vol 21 (3) ◽  
pp. 250-261 ◽  
Author(s):  
Brian N. Turner ◽  
Scott A Gold

Purpose – The purpose of this paper is to critically review the literature related to dimensional accuracy and surface roughness for fused deposition modeling and similar extrusion-based additive manufacturing or rapid prototyping processes. Design/methodology/approach – A systematic review of the literature was carried out by focusing on the relationship between process and product design parameters and the dimensional and surface properties of finished parts. Methods for evaluating these performance parameters are also reviewed. Findings – Fused deposition modeling® and related processes are the most widely used polymer rapid prototyping processes. For many applications, resolution, dimensional accuracy and surface roughness are among the most important properties in final parts. The influence of feedstock properties and system design on dimensional accuracy and resolution is reviewed. Thermal warping and shrinkage are often major sources of dimensional error in finished parts. This phenomenon is explored along with various approaches for evaluating dimensional accuracy. Product design parameters, in particular, slice height, strongly impact surface roughness. A geometric model for surface roughness is also reviewed. Originality/value – This represents the first review of extrusion AM processes focusing on dimensional accuracy and surface roughness. Understanding and improving relationships between materials, design parameters and the ultimate properties of finished parts will be key to improving extrusion AM processes and expanding their applications.


2017 ◽  
Vol 23 (4) ◽  
pp. 804-810 ◽  
Author(s):  
Shiqing Cao ◽  
Dandan Yu ◽  
Weilan Xue ◽  
Zuoxiang Zeng ◽  
Wanyu Zhu

Purpose The purpose of this paper is to prepare a new modified polybutylene terephalate (MPBT) for fused deposition modeling (FDM) to increase the variety of materials compatible with printing. And the printing materials can be used to print components with a complex structure and functional mechanical parts. Design/methodology/approach The MPBT, poly(butylene terephalate-co-isophthalate-co-sebacate) (PBTIS), was prepared for FDM by direct esterification and subsequent polycondensation using terephthalic acid (PTA), isophthalic acid (PIA), sebacic acid (SA) and 1,4-butanediol (BDO). The effects of the content of PIA (20-40 mol%) on the mechanical properties of PBTIS were investigated when the mole per cent of SA (αSA) is zero. The effects of αSA (0-7mol%) on the thermal, rheological and mechanical properties of PBTIS were investigated at nPTA/nPIA = 7/3. A desktop wire drawing and extruding machine was used to fabricate the filaments, whose printability and anisotropy were tested by three-dimensional (3D) printing experiments. Findings A candidate content of PIA introducing into PBT was obtained to be about 30 per cent, and the Izod notched impact strength of PBTIS increased with the increase of αSA. The results showed that the PBTIS (nPTA/nPIA = 7/3, αSA = 3-5mol%) is suitable for FDM. Originality/value New printing materials with good Izod notched impact strength were obtained by introducing PIA and SA (nPTA/nPIA = 7/3, αSA = 3-5 mol%) into PBT and their anisotropy are better than that of ABS.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nitin Dixit ◽  
Varun Sharma ◽  
Pradeep Kumar

Purpose The surface roughness of additively manufactured parts is usually found to be high. This limits their use in industrial and biomedical applications. Therefore, these parts required post-processing to improve their surface quality. The purpose of this study is to finish three-dimensional (3D) printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) parts using abrasive flow machining (AFM). Design/methodology/approach A hydrogel-based abrasive media has been developed to finish 3D printed parts. The developed abrasive media has been characterized for its rheology and thermal stability using sweep tests, thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The ABS and PLA cylindrical parts have been prepared using fused deposition modeling (FDM) and finished using AFM. The experiments were designed using Taguchi (L9 OA) method. The effect of process parameters such as extrusion pressure (EP), layer thickness (LT) and abrasive concentration (AC) was investigated on the amount of material removed (MR) and percentage improvement in surface roughness (%ΔRa). Findings The developed abrasive media was found to be effective for finishing FDM printed parts using AFM. The microscope images of unfinished and finished showed a significant improvement in surface topography of additively manufactures parts after AFM. The results reveal that AC is the most significant parameter during the finishing of ABS parts. However, EP and AC are the most significant parameters for MR and %ΔRa, respectively, during the finishing of PLA parts. Practical implications The FDM technology has applications in the biomedical, electronics, aeronautics and defense sectors. PLA has good biodegradable and biocompatible properties, so widely used in biomedical applications. The ventilator splitters fabricated using FDM have a profile similar to the shape used in the present study. Research limitations/implications The present study is focused on finishing FDM printed cylindrical parts using AFM. Future research may be done on the AFM of complex shapes and freeform surfaces printed using different additive manufacturing (AM) techniques. Originality/value An abrasive media consists of xanthan gum, locust bean gum and fumed silica has been developed and characterized. An experimental study has been performed by combining printing parameters of FDM and finishing parameters of AFM. A comparative analysis in MR and %ΔRa has been reported between 3D printed ABS and PLA parts.


2019 ◽  
Vol 26 (2) ◽  
pp. 288-298 ◽  
Author(s):  
Oğuzhan Emre Akbaş ◽  
Onur Hıra ◽  
Sahar Zhiani Hervan ◽  
Shahrad Samankan ◽  
Atakan Altınkaynak

Purpose This paper aims to analyze experimentally and numerically the effect of the nozzle temperature and feed rates on the dimensions of the fused deposition modeling (FDM) polymer parts. Design/methodology/approach In total, 30 strips per sample were printed with the same width as the nozzle diameter. The strips were printed with one vertical movement of the nozzle head. The width of the strips was measured with a caliper at five locations. A linear regression model was created based on the experimental data to understand the correlation between the strip width deviation and the parameters of interest. Numerical simulations were performed to predict the swell of the polymer exiting the nozzle using finite element method combined with level set method. The experimental results were then used to validate the models. Findings The average accuracy of polylactic acid (PLA) samples was better than that of acrylonitrile butadiene styrene (ABS) samples. The average strip width had a tendency to increase with increasing temperature for PLA samples, whereas ABS samples showed mixed behavior. The strip width decreased with increasing feed rate for most cases. The measurement positions had a major effect on strip width when compared to nozzle temperature and feed rate. The numerical model predictions were in good agreement with the experimental data. A few discrepancies were observed at high feed rates and nozzle temperatures. Originality/value This study will contribute to gaps in knowledge regarding the effect of processing conditions on dimensional accuracy of FDM-printed parts. The developed numerical model can be efficiently used to predict the dimensional accuracy of FDM-printed parts.


2018 ◽  
Vol 24 (5) ◽  
pp. 865-871 ◽  
Author(s):  
Sonette Du Preez ◽  
Alyson Johnson ◽  
Ryan F. LeBouf ◽  
Stephanus J.L. Linde ◽  
Aleksandr B. Stefaniak ◽  
...  

Purpose This paper aims to measure exposures to airborne contaminants during three-dimensional (3-D) printing and post-processing tasks in an industrial workplace. Design/methodology/approach Contaminant concentrations were assessed using real-time particle number (0.007 to 1 µm) and total volatile organic compound (TVOC) monitors and thermal desorption tubes during various tasks at a manufacturing facility using fused deposition modeling (FDMTM) 3-D printers. Personal exposures were measured for two workers using nanoparticle respiratory deposition samplers for metals and passive badges for specific VOCs. Findings Opening industrial-scale FDMTM 3-D printer doors after printing, removing desktop FDMTM 3-D printer covers during printing, acetone vapor polishing (AVP) and chloroform vapor polishing (CVP) tasks all resulted in transient increases in levels of submicrometer-scale particles and/or organic vapors, a portion of which enter the workers’ breathing zone, resulting in exposure. Personal exposure to quantifiable levels of metals in particles <300 nm were 0.02 mg/m3 for aluminum, chromium, copper, iron and titanium during FDMTM printing. Personal exposures were 0.38 to 6.47 mg/m3 for acetone during AVP and 0.18 mg/m3 for chloroform during CVP. Originality/value Characterization of tasks provided insights on factors that influenced contaminant levels, and in turn exposures to various particles, metals < 300 nm and organic vapors. These concentration and exposure factors data are useful for identifying tasks and work processes to consider for implementation of new or improved control technologies to mitigate exposures in manufacturing facilities using FDMTM 3-D printers.


2012 ◽  
Vol 463-464 ◽  
pp. 226-233 ◽  
Author(s):  
M.F.M. Omar ◽  
S. Sharif ◽  
M. Ibrahim ◽  
H. Hehsan ◽  
M.N.M. Busari ◽  
...  

The ability of rapid prototyping (RP) technology to fabricate direct part of any complex shape as a sacrificial pattern in shorter lead time has benefited the foundry industries significantly. The quality of investment casting (IC) parts is directly related to the master pattern fabricated from RP process. The main objective of this study was to evaluate the quality characteristics of various RP patterns that were fabricated by various RP processes which include 3D Printer (3DP), Fused Deposition Modeling (FDM) and Multijet Modeling (MJM). Evaluation of the RP patterns was carried out on dimensional accuracy, surface roughness and pattern shrinkage. Different internal pattern designs for the RP parts were developed using Insight software for FDM process and Solidworks 2011 for other RP systems. In addition to the quality assessments, the effect of the internal pattern designs on the burn out behaviour of the RP patterns was also evaluated. Experimental results showed that FDM and MJM produced patterns with better accuracy, surface roughness and part shrinkage when compared to 3DP. It was evident that the internal pattern structure improved the accuracy of the patterns produced from all RP processes. Results showed that FDM and MJM processes were superior in terms of mold cleanliness when no residual ash was observed during the burn out stage. Significant oxidation of ceramic powder was observed on the molds of the 3DP patterns which need to be removed manually from the molds.


2014 ◽  
Vol 875-877 ◽  
pp. 1235-1238 ◽  
Author(s):  
Wan Yusoff Way ◽  
Z.Nur Zawanah ◽  
A.B. Nurshafika ◽  
M.H. Ani ◽  
Y.M. Mustafah

The purpose of this research is to fabricate the hip and pelvis part for designing the acetabular implant by using Fused Deposition Modeling (FDM) technique. The methodology of this research is begin by converting the 2D image of CT into 3D image through Invesalius 3.0 software. Then the 3D image is converted to .stl format and exported to FDM machine for fabrication purpose. The finish prototype of 3D biomodel replica is evaluated in order to define the problem face by the patient. Also, the dimensional accuracy is measured between 3D replica model and 3D virtual model. Based on the result of 3D biomodel, the ball joint of the femur on the right side is dislocating from its original position because of the fracture occur on acetabular socket. The implant for acetabular fracture is design by using CATIA software and the design must ensure to be fit with the fracture area. Therefore, this study has contributed to medical area especially in Malaysia in improving patient specific preoperative planning and giving better visualization information of the fracture.


Author(s):  
Kamaljit Singh Boparai ◽  
Gurpartap Singh ◽  
Rupinder Singh ◽  
Sarabjit Singh

Abstract In this work, 3D printed master patterns of acrylonitrile butadiene styrene (ABS) thermoplastic material have been used for the preparation of Ni-Cr based functional prototypes as partial dentures (PD). The study started with patient specific three dimensional (3D), CAD data (fetched through scanning). This data was used for preparation of .STL file for printing of master patterns on fused deposition modeling (FDM) setup. The 3D printed master patterns were further wax coated to reduce the surface irregularities (as cost effective post processing technique). The hybrid patterns were subjected to investment casting for the preparation of Ni-Cr based PD. The finally prepared functional prototypes as PD were optimized for dimensional accuracy, surface finish and surface hardness as responses. The results are visualized and supported by photomicrographs and in-vitro analysis.


2018 ◽  
Vol 178 ◽  
pp. 02008
Author(s):  
Dragoş-Florin Chitariu ◽  
Adriana Munteanu

Fixtures are used for orientation, positioning and tightening of the workpiece during machining, control and assembly. The main fixture requirements are: orientation, positioning and tightening precision in accordance with the machining requirements. The materials used for fixture components, especially, supports and clamping mechanism are, usually, alloy steel with HRC hardness up to 55-60 HRC. These components are machined to high level of precision thus assuring the overall precision of the fixture. In order to achieve high stiffness and a good dampening capacity the fixture become, usually, very heavy. In the case of manually operated fixtures light weight is an advantage; also there are operations such as inspection, assembly where the operating forces are low. In this case lightweight materials can be used for fixture construction. In this paper the FDM (Fused Deposition Modeling) 3D printing technology is used. Support buttons and v-block fixture components were selected and 3D printed. The effect of printing orientation of active surfaces of support was analysed. The dimensional accuracy and surface roughness on the active surface were measured. Experimental results indicate that surface roughness is dependent on the orientation of the printed workpiece.


Sign in / Sign up

Export Citation Format

Share Document