Effects of the unit cell topology on the compression properties of porous Co-Cr scaffolds fabricated via selective laser melting

2017 ◽  
Vol 23 (1) ◽  
pp. 16-27 ◽  
Author(s):  
Changjun Han ◽  
Chunze Yan ◽  
Shifeng Wen ◽  
Tian Xu ◽  
Shuai Li ◽  
...  

Purpose Selective laser melting (SLM) is an additive manufacturing process suitable for fabricating metal porous scaffolds. The unit cell topology is a significant factor that determines the mechanical property of porous scaffolds. Therefore, the purpose of this paper is to evaluate the effects of unit cell topology on the compression properties of porous Cobalt–chromium (Co-Cr) scaffolds fabricated by SLM using finite element (FE) and experimental measurement methods. Design/methodology/approach The Co-Cr alloy porous scaffolds constructed in four different topologies, i.e. cubic close packed (CCP), face-centered cubic (FCC), body-centered cubic (BCC) and spherical hollow cubic (SHC), were designed and fabricated via SLM process. FE simulations and compression tests were performed to evaluate the effects of unit cell topology on the compression properties of SLM-processed porous scaffolds. Findings The Mises stress predicted by FE simulations showed that different unit cell topologies resulted in distinct stress distributions on the bearing struts of scaffolds, whereas the unit cell size directly determined the stress value. Comparisons on the stress results for four topologies showed that the FCC unit cell has the minimum stress concentration due to its inclined bearing struts and horizontal arms. Simulations and experiments both indicated that the compression modulus and strengths of FCC, BCC, SHC, CCP scaffolds with the same cell size presented in a descending order. These distinct compression behaviors were correlated with the corresponding mechanics response on bearing struts. Two failure mechanisms, cracking and collapse, were found through the results of compression tests, and the influence of topological designs on the failure was analyzed and discussed. Finally, the cell initial response of the SLM-processed Co-Cr scaffold was tested through the in vitro cell culture experiment. Originality/value A focus and concern on the compression properties of SLM-processed porous scaffolds was presented from a new perspective of unit cell topology. It provides some new knowledge to the structure optimization of porous scaffolds for load-bearing bone implants.

2012 ◽  
Vol 538-541 ◽  
pp. 1904-1907 ◽  
Author(s):  
Dong Ming Xiao ◽  
Yong Qiang Yang ◽  
Xu Bin Su ◽  
Man Hui Zhang ◽  
Di Wang

Cellular structures exhibit favorable properties for multifunctional applications, such as light weight, high load-bearing combined with high heat exchange capability. This paper is to seek optimal cellular structures as the core architectures of parts manufactured by selective laser melting (SLM) technology, which provides required mechanical properties. Design features for characterizing optimal structural performance are discussed. Some preliminary design rules are developed to improve the manufacturability and the quality of cellular structures, the orientation of strut is designed as ±45° or 90°. Compression tests are also carried out to seek cellular structures of synthetically optimal mechanical properties. Comparing the effects of the unit cell architecture and the relative density on mechanical properties, it reveals that unit cell architecture is dominant rather than the relative density, and the truss lattice with [90°,±45°] structure is the overall best performing among the selected cellular structures.


Author(s):  
Sunil Raghavendra ◽  
Alberto Molinari ◽  
Vigilio Fontanari ◽  
Michele Dallago ◽  
Valerio Luchin ◽  
...  

Additive manufacturing is an evolving technology for fabricating porous structures used in a broad array of applications, ranging from the aerospace industry to biomedical engineering. Porous titanium alloy (Ti6Al4V) structures play a major role in biomedical implants and are preferred over conventional solid implants because their properties can be tailored to obtain the stiffness required to avoid stress shielding and improve osteointegration. The mechanical properties of these structures are dependent on unit cell topology and overall porosity. In the present work, three open cellular configurations were studied, namely regular (square), irregular (skewed square) and fully random structures, at three different porosity levels. The samples were manufactured using the selective laser melting of spherical Ti6Al4V powder. The deviations of manufactured samples from as designed were assessed using morphological characterisations and porosity analyses. The mechanical characterisations of the samples included monotonic and cyclic tensile tests, along with conventional compression tests under monotonic and cyclic conditions. The results from the study indicate a clear deviation of thickness values from as-designed values. The effect of inclination of the strut with respect to the loading axis has been studied in compression samples. The off-axis loading in compression led to the asymmetry in the Young's modulus in compression and tension. These led to finite element modelling of structures in the elastic regime and its validation using Gibson–Ashby model for cellular structures.


2018 ◽  
Vol 21 (2) ◽  
pp. 1800737
Author(s):  
Xina Huang ◽  
Sheng Zhang ◽  
Quandong Hu ◽  
Lihui Lang ◽  
Shuili Gong ◽  
...  

2016 ◽  
Vol 851 ◽  
pp. 201-210 ◽  
Author(s):  
Ying Wang ◽  
Ji Min Chen ◽  
Yan Ping Yuan

Selective laser melting (SLM) are getting more and more established as reliable methods for producing open-porous scaffolds with accurately controlled pore size, strut size, and porosity. However, the optimal geometrical parameter of the unit cell by SLM remained unclear. In this study, we evaluated the effect of unit geometrical parameters to the mechanical properties of porous scaffolds by finite element analysis method and Mechanical testing method. Six rhombic dodecahedron unit cells were designed with different geometrical parameter and the scaffolds manufactured by SLM using Ti6Al4V. The compression testing results show that the specimens with the same pore size, the elastic modulus and the strength are increased with increasing strut size and the specimens with the same strut size, the elastic modulus and the strength are decreased with increasing strut size. The porosity can be calculated by pore size and strut size. The compression strength of the porous scaffolds is 114MPa~258MPa and the quasi-elastic gradient is 3.18Gpa~8.64Gpa, which are similar to human bone. The simulation values are different from the experiment values but the variation tendency is in accordance.


2021 ◽  
Vol 27 (3) ◽  
pp. 453-464
Author(s):  
Lan Li ◽  
Tan Pan ◽  
Xinchang Zhang ◽  
Yitao Chen ◽  
Wenyuan Cui ◽  
...  

Purpose During the powder bed fusion process, thermal distortion is one big problem owing to the thermal stress caused by the high cooling rate and temperature gradient. For the purpose of avoiding distortion caused by internal residual stresses, support structures are used in most selective laser melting (SLM) process especially for cantilever beams because they can assist the heat dissipation. Support structures can also help to hold the work piece in its place and reduce volume of the printing materials. The mitigation of high thermal gradients during the manufacturing process helps to reduce thermal distortion and thus alleviate cracking, curling, delamination and shrinkage. Therefore, this paper aims to study the displacement and residual stress evolution of SLMed parts. Design/methodology/approach The objective of this study was to examine and compare the distortion and residual stress properties of two cantilever structures, using both numerical and experimental methods. The part-scale finite element analysis modeling technique was applied to numerically analyze the overhang distortions, using the layer-by-layer model for predicting a part scale model. The validation experiments of these two samples were built in a SLM platform. Then average displacement of the four tip corners and residual stress on top surface of cantilever beams were tested to validate the model. Findings The validation experiments results of average displacement of the four tip corners and residual stress on top surface of cantilever beams were tested to validate the model. It was found that they matched well with each other. From displacement and residual stress standpoint, by introducing two different support structure, two samples with the same cantilever beam can be successfully printed. In terms of reducing wasted support materials, print time and high surface quality, sample with less support will need less post-processing and waste energy. Originality/value Numerical modeling in this work can be a very useful tool to parametrically study the feasibility of support structures of SLM parts in terms of residual stresses and deformations. It has the capability for fast prediction in the SLMed parts.


2018 ◽  
Vol 24 (9) ◽  
pp. 1554-1562 ◽  
Author(s):  
Luo Zhang ◽  
Haihong Zhu ◽  
Jiahe Liu ◽  
Xiaoyan Zeng

Purpose The purpose of this paper is to investigate the track evolution and surface characteristics of selective laser melting Ti6Al4V. Design/methodology/approach In the present paper, Ti6Al4V single-track, multi-track and bulk sample were formed at different scanning speed by selective laser melting (SLM). Then, the surface morphology, three-dimension profile and surface roughness were evaluated. The width of the single and multi-track was measured and compared. Findings The results showed that the heat accumulation played a great role on the evolution of tracks and surface characteristics from single-track to multi-track and to bulk. The surface morphology of the subsequent tracks became more regular when the single-track was irregular at the same high scanning speed. The width of last track Wn was always larger than that of the first track W1. The Ra of the top of the bulk increased with the increase of the scanning speed, this trend was as same as the Ra of the single-track, but the trend of Ra of the side was opposite. Originality/value The effect of heat accumulation on the track evolution and surface characteristics is obtained. The results can help to derive a smooth surface with a regular and continuous track in SLM.


2018 ◽  
Vol 24 (3) ◽  
pp. 539-547 ◽  
Author(s):  
Zefeng Xiao ◽  
Yongqiang Yang ◽  
Di Wang ◽  
Changhui Song ◽  
Yuchao Bai

Purpose This paper aims to summarize design rules based on the process characteristics of selective laser melting (SLM) and structural optimization and apply the design rules in the lightweight design of an aluminum alloy antenna bracket. The design goal is to reduce 30 per cent of the weight while maintaining the stress levels in the original part. Design/methodology/approach To reduce weight as much as possible, the titanium alloy with higher specific strength was selected during the process of optimization. The material distribution of the bracket was improved by the topology optimization design. The redesign for SLM was used to obtain an optimization model, which was more suitable for SLM. The component performance was improved by shape optimization. The modal analysis data of the structural optimization model were compared with those of the stochastic lightweight model to verify the structural optimization model. The scanning data were compared with those of the original model to verify whether the model was suitable for SLM. Findings Structural optimization design for antenna bracket realized the mass decrease of 30.43 per cent and the fundamental frequency increase of 50.18 per cent. The modal analysis data of the stochastic lightweight model and the structural optimization model indicated that the optimization performance of structural optimization method was better than that of the stochastic lightweight method. The comparison results between the scanning data of the forming part and the original data confirmed that the structural optimization design for SLM lightweight component could achieve the desired forming accuracy. Originality/value This paper summarizes geometric constraints in SLM and derives design rules of structural optimization based on the process characteristics of SLM. SLM design rules make structural optimization design more reasonable. The combination of structural optimization design and SLM can improve the performance of lightweight antenna bracket significantly.


2019 ◽  
Vol 26 (2) ◽  
pp. 249-258 ◽  
Author(s):  
Andrzej Pawlak ◽  
Patrycja E. Szymczyk ◽  
Tomasz Kurzynowski ◽  
Edward Chlebus

Purpose This paper aims to discuss the results of material tests conducted on specimens manufactured from AZ31 alloy powder by selective laser melting (SLM) technology. The manufactured specimens were then subjected to porosity assessment, microstructure analysis as well as to mechanical and corrosion tests. Design/methodology/approach SLM process was optimized using the design of experiments tools. Experiments aimed at selecting optimum process parameters were carried out in accordance with a five-level rotatable central composite design. Findings The porosity results showed very low values of <1 per cent, whereas mechanical properties were close to the values reported for the reference wrought AZ31 alloy in hot-rolled state. A fine-grained microstructure was observed with a large range of grain size, which enhanced the material’s mechanical properties. Corrosion characteristics of the SLM-manufactured material exceed those determined for the wrought material. Originality/value The results presented in this paper drive interest in magnesium alloys used in additive manufacturing processes. Low porosity, good mechanical properties, form of the microstructure and, most importantly, improved corrosion characteristics suggest that SLM provides great potential for the manufacture of ultralight structures, including resorbable metallic implants.


Sign in / Sign up

Export Citation Format

Share Document