Design optimization of a high-sensitive absolute micro-pressure sensor

Sensor Review ◽  
2014 ◽  
Vol 34 (3) ◽  
pp. 312-318 ◽  
Author(s):  
Zhongliang Yu ◽  
Yulong Zhao ◽  
Lili Li ◽  
Cun Li ◽  
Xiawei Meng ◽  
...  

Purpose – The purpose of this study is to develop a piezoresistive absolute micro-pressure sensor for altimetry. For this application, both high sensitivity and high overload resistance are required. To develop a piezoresistive absolute micro-pressure sensor for altimetry, both high sensitivity and high-overload resistance are required. The structure design and optimization are critical for achieving the purpose. Besides, the study of dynamic performances is important for providing a solution to improve the accuracy under vibration environments. Design/methodology/approach – An improved structure is studied through incorporating sensitive beams into the twin-island-diaphragm structure. Equations about surface stress and deflection of the sensor are established by multivariate fittings based on the ANSYS simulation results. Structure dimensions are determined by MATLAB optimization. The silicon bulk micromachining technology is utilized to fabricate the sensor prototype. The performances under both static and dynamic conditions are tested. Findings – Compared with flat diaphragm and twin-island-diaphragm structures, the sensor features a relatively high sensitivity with the capacity of suffering atmosphere due to the introduction of sensitive beams and the optimization method used. Originality/value – An improved sensor prototype is raised and optimized for achieving the high sensitivity and the capacity of suffering atmosphere simultaneously. A general optimization method is proposed based on the multivariate fitting results. To simplify the calculation, a method to linearize the nonlinear fitting and optimization problems is presented. Moreover, a differential readout scheme attempting to decrease the dynamic interference is designed.

Sensor Review ◽  
2019 ◽  
Vol 39 (3) ◽  
pp. 397-406
Author(s):  
Xiaozhou Lu ◽  
Xi Xie ◽  
Qiaobo Gao ◽  
Hanlun Hu ◽  
Jiayi Yang ◽  
...  

Purpose The hands of intelligent robots perceive external stimuli and respond effectively according to tactile or pressure sensors. However, the traditional tactile and pressure sensors cannot perform human-skin-like intelligent properties of high sensitivity, large measurement range, multi-function and flexibility simultaneously. The purpose of this paper is to present a flexible tactile-pressure sensor based on hyper-elastics polydimethylsiloxane and plate capacitance. Design/methodology/approach With regard to this problem, this paper presents a flexible tactile-pressure sensor based on hyper-elastics PDMS and plate capacitance. The sensor has a size of 10 mm × 10 mm × 1.3 mm and is composed of four upper electrodes, one middle driving electrode and one lower electrode. The authors first analyzed the structure and the tactile-pressure sensing principle of human skin to obtain the design parameters of the sensor. Then they presented the working principle, material selection and mechanical structure design and fabrication process of the sensor. The authors also fabricated several sample devices of the sensor and carried out experiments to establish the relationship between the sensor output and the pressure. Findings The results show that the tactile part of the sensor can measure a range of 0.05-1N/mm2 micro pressure with a sensitivity of 2.93 per cent/N and a linearity of 0.03 per cent. The pressure part of the sensor can measure a range of 1-30N/mm2 pressure with a sensitivity of 0.08 per cent/N and a linearity of 0.07 per cent. Originality/value This paper analyzes the tactile and pressure sensing principles of human skin and develop an intelligent sensitive human-skin-like tactile-pressure sensor for intelligent robot perception systems. The sensor can achieve to imitate the tactile and pressure function simultaneously with a measurement resolution of 0.01 N and a spatial resolution of 2 mm.


Author(s):  
Shafiullah Khan ◽  
Shiyou Yang ◽  
Obaid Ur Rehman

Purpose The aim of this paper is to explore the potential of particle swarm optimization (PSO) algorithm to solve an electromagnetic inverse problem. Design/methodology/approach A modified PSO algorithm is designed. Findings The modified PSO algorithm is a more stable, robust and efficient global optimizer for solving the well-known benchmark optimization problems. The new mutation approach preserves the diversity of the population, whereas the proposed dynamic and adaptive parameters maintain a good balance between the exploration and exploitation searches. The numerically experimental results of two case studies demonstrate the merits of the proposed algorithm. Originality/value Some improvements, such as the design of a new global mutation mechanism and introducing a novel strategy for learning and control parameters, are proposed.


Author(s):  
Tran Anh Vang ◽  
Xianmin Zhang ◽  
Benliang Zhu

The sensitivity and linearity trade-off problem has become the hotly important issues in designing the piezoresistive pressure sensors. To solve these trade-off problems, this paper presents the design, optimization, fabrication, and experiment of a novel piezoresistive pressure sensor for micro pressure measurement based on a combined cross beam - membrane and peninsula (CBMP) structure diaphragm. Through using finite element method (FEM), the proposed sensor performances as well as comparisons with other sensor structures are simulated and analyzed. Compared with the cross beam-membrane (CBM) structure, the sensitivity of CBMP structure sensor is increased about 38.7 % and nonlinearity error is reduced nearly 8%. In comparison with the peninsula structure, the maximum non-linearity error of CBMP sensor is decreased about 40% and the maximum deflection is extremely reduced 73%. Besides, the proposed sensor fabrication is performed on the n-type single crystal silicon wafer. The experimental results of the fabricated sensor with CBMP membrane has a high sensitivity of 23.4 mV/kPa and a low non-linearity of −0.53% FSS in the pressure range 0–10 kPa at the room temperature. According to the excellent performance, the sensor can be applied to measure micro-pressure lower than 10 kPa.


2017 ◽  
Vol 89 (4) ◽  
pp. 609-619 ◽  
Author(s):  
Witold Artur Klimczyk ◽  
Zdobyslaw Jan Goraj

Purpose This paper aims to address the issue of designing aerodynamically robust empennage. Aircraft design optimization often narrowed to analysis of cruise conditions does not take into account other flight phases (manoeuvres). These, especially in unmanned air vehicle sector, can be significant part of the whole flight. Empennage is a part of the aircraft, with crucial function for manoeuvres. It is important to consider robustness for highest performance. Design/methodology/approach Methodology for robust wing design is presented. Surrogate modelling using kriging is used to reduce the optimization cost for high-fidelity aerodynamic calculations. Analysis of varying flight conditions, angle of attack, is made to assess robustness of design for particular mission. Two cases are compared: global optimization of 11 parameters and optimization divided into two consecutive sub-optimizations. Findings Surrogate modelling proves its usefulness for cutting computational time. Optimum design found by splitting problem into sub-optimizations finds better design at lower computational cost. Practical implications It is demonstrated, how surrogate modelling can be used for analysis of robustness, and why it is important to consider it. Intuitive split of wing design into airfoil and planform sub-optimizations brings promising savings in the optimization cost. Originality/value Methodology presented in this paper can be used in various optimization problems, especially those involving expensive computations and requiring top quality design.


Author(s):  
Levent Aydin ◽  
Olgun Aydin ◽  
H Seçil Artem ◽  
Ali Mert

Dimensionally stable material design is an important issue for space structures such as space laser communication systems, telescopes, and satellites. Suitably designed composite materials for this purpose can meet the functional and structural requirements. In this paper, it is aimed to design the dimensionally stable laminated composites by using efficient global optimization method. For this purpose, the composite plate optimization problems have been solved for high stiffness and low coefficients of thermal and moisture expansion. Some of the results based on efficient global optimization solution have been verified by genetic algorithm, simulated annealing, and generalized pattern search solutions from the previous studies. The proposed optimization algorithm is also validated experimentally. After completing the design and optimization process, failure analysis of the optimized composites has been performed based on Tsai–Hill, Tsai–Wu, Hoffman, and Hashin–Rotem criteria.


2019 ◽  
Vol 36 (5) ◽  
pp. 1744-1763
Author(s):  
Wensheng Xiao ◽  
Qi Liu ◽  
Linchuan Zhang ◽  
Kang Li ◽  
Lei Wu

PurposeBat algorithm (BA) is a global optimization method, but has a worse performance on engineering optimization problems. The purpose of this study is to propose a novel chaotic bat algorithm based on catfish effect (CE-CBA), which can effectively deal with optimization problems in real-world applications.Design/methodology/approachIncorporating chaos strategy and catfish effect, the proposed algorithm can not only enhance the ability for local search but also improve the ability to escape from local optima traps. On the one hand, the performance of CE-CBA has been evaluated by a set of numerical experiment based on classical benchmark functions. On the other hand, five benchmark engineering design problems have been also used to test CE-CBA.FindingsThe statistical results of the numerical experiment show the significant improvement of CE-CBA compared with the standard algorithms and improved bat algorithms. Moreover, the feasibility and effectiveness of CE-CBA in solving engineering optimization problems are demonstrated.Originality/valueThis paper proposed a novel BA with two improvement strategies including chaos strategy and catfish effect for the first time. Meanwhile, the proposed algorithm can be used to solve many real-world engineering optimization problems with several decision variables and constraints.


2021 ◽  
pp. 105245
Author(s):  
Xin Tang ◽  
Junwang Tian ◽  
Jiafeng Zhao ◽  
Zhong Jin ◽  
Yunpeng Liu ◽  
...  

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guanzheng Wu ◽  
Siming Li ◽  
Jiayu Hu ◽  
Manchen Dong ◽  
Ke Dong ◽  
...  

Purpose This paper aims to study the working principle of the capacitive pressure sensor and explore the distribution of pressure acting on the surface of the capacitor. Herein, a kind of high sensitivity capacitive pressure sensor was prepared by overlaying carbon fibers (CFs) on the surfaces of the thermoplastic elastomer (TPE), the TPE with high elasticity is a dielectric elastomer for the sensor and the CFs with excellent electrical conductivity were designed as the conductor. Design/methodology/approach Due to the excellent mechanical properties and electrical conductivity of CFs, it was designed as the conductor layer for the TPE/CFs capacitive pressure sensor via laminating CFs on the surfaces of the columnar TPE. Then, a ‘#' type structure of the capacitive pressure sensor was designed and fabricated. Findings The ‘#' type of capacitive pressure sensor of TPE/CFs composite was obtained in high sensitivity with a gauge factor of 2.77. Furthermore, the change of gauge factor values of the sensor under 10 per cent of applied strains was repeated for 1,000 cycles, indicating its outstanding sensing stability. Moreover, the ‘#' type capacitive pressure sensor of TPE/CFs was consisted of several capacitor arrays via laminating CFs, which could detect the distribution of pressure. Research limitations/implications The TPE/CFs capacitive pressure sensor was easily fabricated with high sensitivity and quick responsiveness, which is desirably applied in wearable electronics, robots, medical devices, etc. Originality/value The outcome of this study will help to fabricate capacitive pressure sensors with high sensitivity and outstanding sensing stability.


2014 ◽  
Vol 12 (1) ◽  
pp. 89-101 ◽  
Author(s):  
Yanxia Sun ◽  
Karim Djouani ◽  
Barend Jacobus van Wyk ◽  
Zenghui Wang ◽  
Patrick Siarry

Purpose – In this paper, a new method to improve the performance of particle swarm optimization is proposed. Design/methodology/approach – This paper introduces hypothesis testing to determine whether the particles trap into the local minimum or not, then special re-initialization was proposed, finally, some famous benchmarks and constrained engineering optimization problems were used to test the efficiency of the proposed method. In the revised manuscript, the content was revised and more information was added. Findings – The proposed method can be easily applied to PSO or its varieties. Simulation results show that the proposed method effectively enhances the searching quality. Originality/value – This paper proposes an adaptive particle swarm optimization method (APSO). A technique is applied to improve the global optimization performance based on the hypothesis testing. The proposed method uses hypothesis testing to determine whether the particles are trapped into local minimum or not. This research shows that the proposed method can effectively enhance the searching quality and stability of PSO.


2018 ◽  
Vol 10 (7) ◽  
pp. 168781401878483 ◽  
Author(s):  
Rong Yuan ◽  
Haiqing Li ◽  
Qingyuan Wang

In this study, an enhanced genetic algorithm is proposed to solve multi-objective design and optimization problems in practical engineering. In the given approach, designers choose available design results from the given samples first. These samples are re-ordered according to their mutual relationships. After that, designers choose an exact ratio of conformity as available field. Furthermore, more weight information can be obtained through finding the minimum value of the norm of unconformity and satisfactory samples. These samples can be used to reflect the preference chosen for Pareto design solutions. A structure design problem of speed increaser used in wind turbine generator systems is solved to show the application of the given design strategy.


Sign in / Sign up

Export Citation Format

Share Document