Multi-response optimization while machining of stainless steel 316L using intelligent approach of grey theory and grey-TLBO

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rakesh Chandmal Sharma ◽  
Vishal Dabra ◽  
Gurpreet Singh ◽  
Rajender Kumar ◽  
Ravi Pratap Singh ◽  
...  

Purpose Stainless steel is widely used in different manufacturing sectors. The purpose of this study is to optimize the process parameters of machining while processing SS316L alloy. The optimization of machining characteristics in the case of SS316L alloy greatly improves the quality and productivity economically. Design/methodology/approach The machining variables in current research are depth of cut, spindle speed and feed rate. The optimization of response characteristics was carried out using the intelligent approach of grey, regression and teaching learning-based optimization (TLBO) and Taguchi-Grey approach. Planning of experiments was made using Taguchi’s based L27 orthogonal array. With the implementation of grey, the response characteristics were normalized and converted into a single response. The regression analysis was used for empirical modeling of the single response induced from the grey application. TLBO is further used to investigate the combinations of machining variables and compared with grey theory. Findings The grey-TLBO based multi-criteria decision-making approach suggests that the optimized setting for material removal rate, mean roughness depth (Rz) and cutting force (Fz) is spindle speed (N): 720 rpm; feed rate (F): 0.3 mm/rev; depth of cut (DoC): 1.7 mm. The grey theory suggests an optimized setting as N: 720 rpm; F: 0.2 mm/rev and DoC: 1.7 mm. Originality/value The parametric optimization during the turning of SS316L using grey-TLBO based intelligent approach is not performed till now. Thus, this intelligent approach will give a path to the researchers working in this direction. However, the grey theory performs better as compared to the grey-TLBO approach.

2020 ◽  
Vol 38 (8A) ◽  
pp. 1143-1153
Author(s):  
Yousif K. Shounia ◽  
Tahseen F. Abbas ◽  
Raed R. Shwaish

This research presents a model for prediction surface roughness in terms of process parameters in turning aluminum alloy 1200. The geometry to be machined has four rotational features: straight, taper, convex and concave, while a design of experiments was created through the Taguchi L25 orthogonal array experiments in minitab17 three factors with five Levels depth of cut (0.04, 0.06, 0.08, 0.10 and 0.12) mm, spindle speed (1200, 1400, 1600, 1800 and 2000) r.p.m and feed rate (60, 70, 80, 90 and 100) mm/min. A multiple non-linear regression model has been used which is a set of statistical extrapolation processes to estimate the relationships input variables and output which the surface roughness which prediction outside the range of the data. According to the non-linear regression model, the optimum surface roughness can be obtained at 1800 rpm of spindle speed, feed-rate of 80 mm/min and depth of cut 0.04 mm then the best surface roughness comes out to be 0.04 μm at tapper feature at depth of cut 0.01 mm and same spindle speed and feed rate pervious which gives the error of 3.23% at evolution equation.


2010 ◽  
Vol 447-448 ◽  
pp. 51-54
Author(s):  
Mohd Fazuri Abdullah ◽  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Abu Bakar Sulong ◽  
Jaharah A. Ghani

The effects of different cutting parameters, insert nose radius, cutting speed and feed rates on the surface quality of the stainless steel to be use in medical application. Stainless steel AISI 316 had been machined with three different nose radiuses (0.4 mm 0.8 mm, and 1.2mm), three different cutting speeds (100, 130, 170 m/min) and feed rates (0.1, 0.125, 0.16 mm/rev) while depth of cut keep constant at (0.4 mm). It is seen that the insert nose radius, feed rates, and cutting speed have different effect on the surface roughness. The minimum average surface roughness (0.225µm) has been measured using the nose radius insert (1.2 mm) at lowest feed rate (0.1 mm/rev). The highest surface roughness (1.838µm) has been measured with nose radius insert (0.4 mm) at highest feed rate (0.16 mm/rev). The analysis of ANOVA showed the cutting speed is not dominant in processing for the fine surface finish compared with feed rate and nose radius. Conclusion, surface roughness is decreasing with decreasing of the feed rate. High nose radius produce better surface finish than small nose radius because of the maximum uncut chip thickness decreases with increase of nose radius.


Sensor Review ◽  
2017 ◽  
Vol 37 (1) ◽  
pp. 78-81 ◽  
Author(s):  
Srdjan Jovic ◽  
Obrad Anicic ◽  
Milivoje Jovanovic

Purpose Acoustic emission (AE) could be used for prevention and detection of tool errors in Computer Numerical Control (CNC) machining. The purpose of this study is to analyze the AE form of CNC machining operations. Design/methodology/approach Experimental measurements were performed with three sensors on the CNC lathe to collect the data of the CNC machining. Adaptive neuro-fuzzy inference system (ANFIS) was applied for the fusion from the sensors’ signals to determine the strength of the signal periodic component among the sensors. Findings There were three inputs, namely, spindle speed, feed rate and depth of cut. ANFIS was also used to determine the inputs’ influence on the prediction of strength of the signal periodic component. Variable selection process was used to select the most dominant factors which affect the prediction of strength of the signal periodic component. Originality/value Results were shown that the spindle speed has the most dominant effect on the strength of the signal periodic component.


2015 ◽  
Vol 1115 ◽  
pp. 12-15
Author(s):  
Nur Atiqah ◽  
Mohammad Yeakub Ali ◽  
Abdul Rahman Mohamed ◽  
Md. Sazzad Hossein Chowdhury

Micro end milling is one of the most important micromachining process and widely used for producing miniaturized components with high accuracy and surface finish. This paper present the influence of three micro end milling process parameters; spindle speed, feed rate, and depth of cut on surface roughness (Ra) and material removal rate (MRR). The machining was performed using multi-process micro machine tools (DT-110 Mikrotools Inc., Singapore) with poly methyl methacrylate (PMMA) as the workpiece and tungsten carbide as its tool. To develop the mathematical model for the responses in high speed micro end milling machining, Taguchi design has been used to design the experiment by using the orthogonal array of three levels L18 (21×37). The developed models were used for multiple response optimizations by desirability function approach to obtain minimum Ra and maximum MRR. The optimized values of Ra and MRR were 128.24 nm, and 0.0463 mg/min, respectively obtained at spindle speed of 30000 rpm, feed rate of 2.65 mm/min, and depth of cut of 40 μm. The analysis of variance revealed that spindle speeds are the most influential parameters on Ra. The optimization of MRR is mostly influence by feed rate. Keywords:Micromilling,surfaceroughness,MRR,PMMA


2019 ◽  
Vol 71 (2) ◽  
pp. 267-277 ◽  
Author(s):  
Aqib Mashood Khan ◽  
Muhammad Jamil ◽  
Ahsan Ul Haq ◽  
Salman Hussain ◽  
Longhui Meng ◽  
...  

Purpose Sustainable machining is a global consensus and the necessity to cope up the serious environmental threats. Minimum quantity lubrication (MQL) and nanofluids-based MQL(NFMQL) are state-of-the-art sustainable lubrication modes. The purpose of this study is to investigate the effect of process parameters, such as feed rate, depth of cut and cutting fluid flow rate, on temperature and surface roughness of the manufactured pieces during face milling of the AISI D2 steel. Design/methodology/approach A statistical technique called response surface methodology with Box–Behnken Design was used to design experimental runs, and empirical modeling was presented. Analysis of variance was carried out to evaluate the model’s accuracy and the validation of the applied technique. Findings A comprehensive analysis revealed the superiority of implementing NFMQL in comparison to MQL within the levels of process parameters. The comparison has shown a significant reduction of temperature under NFMQL at the tool-workpiece interface from 16.2 to 34.5 per cent and surface roughness from 11.3 to 12 per cent. Practical implications This research is useful for practitioners to predict the responses in workshop and select appropriate cutting parameters. Moreover, this research will be helpful to reduce the resource which will ultimately save energy consumption and cost. Originality/value To cope with the industrial challenges and tribological issues associated with the milling of AISI D2 steel, experiments were conducted in a distinct machining mode with innovative cooling/lubrication. Until now, few studies have addressed the key lubrication effects of Al2O3-based nanofluid on the machinability of D2 steel under NFMQL lubrication condition.


2020 ◽  
Vol 2 (2) ◽  
pp. 49-60
Author(s):  
Farizi Rachman Farizi Rachman ◽  
Bayu Wiro K ◽  
Tri Andi Setiawan ◽  
Pradita Nurkholies

Industri manufaktur di Indonesia semakin meningkat seiring dengan tingkat kebutuhan manusia yang beraneka ragam dan memicu berkembangnya teknologi, salah satunya industri proses permesinan atau machining. Kualitas produk yang baik dapat dilihat dari tingkat kekasaran permukaannya karena kekasaran permukaan dapat mempengaruhi performa yang berkaitan dengan aspek fungsional dari produk. Pada penelitian ini telah dilakukan optimasi setting parameter CNC milling terhadap kekasaran permukaan pada material S50C dengan end mill HSS diameter 8 mm. Material S50C banyak digunakan dalam manufaktur mesin seperti mekanis base plate, roda gigi, standart punch head dan komponen mesin lainnya. Penelitian ini menggunakan metode Taguchi. Parameter yang digunakan yaitu spindle speed, Feed rate dan depth of cut dengan cairan pendingin sebagai variabel konstan. Parameter optimum untuk mendapatkan nillai kekasaran yang rendah yaitu spindle speed 1100 rpm, feed rate 46 mm/min dan depth of cut 0.5 mm. Dengan taraf signifikansi 0.1 menunjukkan bahwa spindle speed berpengaruh secara signifikan dengan kontribusi 38.42% diikuti feed rate dengan kontribusi 34.16%.


2014 ◽  
Vol 592-594 ◽  
pp. 18-22
Author(s):  
Hari Vasudevan ◽  
Ramesh Rajguru ◽  
Naresh Deshpande

Milling is one of the most practical machining processes for removing excess material to produce high quality surfaces. However, milling of composite materials is a rather complex task, owing to its heterogeneity and poor surface finish, which includes fibre pullout, matrix delamination, sub-surface damage and matrix polymer interface failure. In this study, an attempt has been made to optimize milling parameters with multiple performance characteristics in the edge milling operation, based on the Grey Relational Analysis coupled with Taguchi method. Taguchi’s L18 orthogonal array was used for the milling experiment. Milling parameters such as milling strategy, spindle speed, feed rate and depth of cut are optimised along with multiple performance characteristics, such as machining forces and delamination. Response table of grey relational grade for four process parameters is used for the analysis to produce the best output; the optimal combination of the parameters. From the response table of the average GRG, it is found that the largest value of the GRG is for down milling, spindle speed of 1000 rpm, feed rate of 150 mm/min and depth of cut 0.4 mm.


2017 ◽  
Vol 889 ◽  
pp. 152-158
Author(s):  
K. Kadirgama ◽  
K. Abou-El-Hossein

Stainless steel was used for many engineering applications. The optimum parameters needs to be identify to save the cutting tool usage and increase productivity. The purpose of this study is to develop the surface roughness mathematical model for AISI 304 stainless steel when milling using TiN (CVD) carbide tool. The milling process was done under various cutting condition which is cutting speed (1500, 2000 and 2500 rpm), feed rate (0.02, 0.03 and 0.04 mm/tooth) and axial depth (0.1, 0.2 and 0.3 mm). The first order model and quadratic model have been developed using Response Surface Method (RSM) with confident level 95%. The prediction models were comparing with the actual experimental results. It is found that quadratic model much fit the experimental result compare to linear model. In general, the results obtained from the mathematical models were in good agreement with those obtained from the machining experiments. Besides that, it is shown that the influence of cutting speed and feed rate are much higher on surface roughness compare to depth of cut. The optimum cutting speed, feed rate and axial depth is 2500 rpm, 0.0212 mm/tooth and 0.3mm respectively. Besides that, continues chip is produced at cutting speed 2500 rpm meanwhile discontinues chip produced at cutting speed 1500 rpm.


2017 ◽  
Vol 18 (1) ◽  
pp. 147-154
Author(s):  
Mohammad Yeakub Ali ◽  
Wan Norsyazila Jailani ◽  
Mohamed Rahman ◽  
Muhammad Hasibul Hasan ◽  
Asfana Banu

Cutting fluid plays an important role in machining processes to achieve dimensional accuracy in reducing tool wear and improving the tool life. Conventional flood cooling method in machining processes is not cost effective and consumption of huge amount of cutting fluids is not healthy and environmental friendly. In micromachining, flood cooling is not recommended to avoid possible damage of the microstructures. Therefore, one of the alternatives to overcome the environmental issues to use minimum quantity of lubrication (MQL) in machining process. MQL is eco-friendly and has economical advantage on manufacturing cost. However, there observed lack of study on MQL in improving machined surface roughness in micromilling. Study of the effects of MQL on surface roughness should be carried out because surface roughness is one of the important issues in micromachined parts such as microfluidic channels. This paper investigates and compares surface roughness with the presence of MQL and dry cutting in micromilling of aluminium alloy 1100 using DT-110 milling machine. The relationship among depth of cut, feed rate, and spindle speed on surface roughness is also analyzed. All three machining parameters identified as significant for surface roughness with dry cutting which are depth of cut, feed rate, and spindle speed. For surface roughness with MQL, it is found that spindle speed did not give much influence on surface roughness. The presence of MQL provides a better surface roughness by decreasing the friction between tool and workpiece.


2017 ◽  
Vol 8 (2) ◽  
pp. 287
Author(s):  
Reddy Sreenivasulu

In any machining operations, quality is the important conflicting objective. In order to give assurance for high productivity, some extent of quality has to be compromised. Similarly productivity will be decreased while the efforts are channelized to enhance quality. In this study,  the experiments were carried out on a CNC vertical machining center (KENT and INDIA Co. Ltd, Taiwan make) to perform 10mm slots on Al 6351-T6 alloy work piece by K10 carbide, four flute end milling cutter as per taguchi design of experiments plan by L9 orthogonal array was choosen to determine experimental trials. Furthermore the spindle speed (rpm), the feed rate (mm/min) and depth of cut (mm) are regulated in these experiments. Surface roughness and chip thickness was measured by a surface analyser of Surf Test-211 series (Mitutoyo) and Digital Micrometer (Mitutoyo) with least count 0.001 mm respectively. Grey relational analysis was employed to minimize surface roughness and chip thickness by setting of optimum combination of machining parameters. Minimum surface roughness and chip thickness obtained with 1000 rpm of spindle speed, 50 mm/min feed rate and 0.7 mm depth of cut respectively. Confirmation experiments showed that Gray relational analysis precisely optimized the drilling parameters in drilling of Al 6351-T6 alloy. 


Sign in / Sign up

Export Citation Format

Share Document