Evaluation of some mathematical models of solar radiation received by a ground collector

2016 ◽  
Vol 13 (4) ◽  
pp. 376-380 ◽  
Author(s):  
Abdelouahab Zaatri ◽  
Norelhouda Azzizi

Purpose Using modeling approaches, this paper aims to propose different mathematical models for estimating the different components of the solar radiation as well as the received solar energy by a collector. Design/methodology/approach In this article, the authors consider three mathematical models to estimate the solar radiation captured at ground level by a solar collector. These models are Capderou model, Liu & Jordan model and R.sun model. In the context of the design of experiments, we performed measurements of solar radiation received by a collector using a pyranometer. The obtained measurements were compared with the three mathematical models. Findings The comparison enabled the subsequent evaluation to determine the most appropriate model that best fit for our region. As a result, the Capderou model reveals to be the most suitable for our region. Originality/value Estimation of solar radiation at ground level (received by a collector) is of paramount importance for the design and optimization of solar energy systems. Nevertheless, many factors influence the amount of energy received by a collector situated at a ground, such as the longitude of the location, latitude, altitude, tilt collector orientation, temperature and humidity of the environment, wind speed, etc. Because of the complex influence of these parameters, the received solar radiation by the collector is a dynamical and a random process.

2019 ◽  
Vol 17 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Javad Riahi Zaniani ◽  
Shahab Taghipour Ghahfarokhi ◽  
Mehdi Jahangiri ◽  
Akbar Alidadi Shamsabadi

Purpose This paper, using energy softwares, designed of Iran and optimized a residential villa in Saman city located in Chaharmahal and Bakhtiari Province. Design/methodology/approach Having used the ideas of Climate Consultant software, the basic designing was conducted by Design Builder Software, and the cooling and heating loads and lighting tools and equipment were calculated. Then, the amount of consuming of heating, cooling and lighting load of the building was optimized through insulation of walls and ceiling, using green roof, double glazing UPVC windows, light intensity sensor and variable refrigerant flow (VRF) system. Findings Simulation results for the stated scenarios showed an annual reduction in energy consumption of 21.1, 7.9, 26.41, 27.3 and 72.3 per cent, respectively. Also, by combining all the five scenarios, an optimal state was achieved which, from the results, brought about an annual reduction of 86.9 per cent in the energy consumption. Originality/value The authors hope that the results of the current paper could be helpful for designers and engineers in reduction of energy consumption for designing a building in similar climatic conditions.


2019 ◽  
Vol 44 (2) ◽  
pp. 168-188
Author(s):  
Shaban G Gouda ◽  
Zakia Hussein ◽  
Shuai Luo ◽  
Qiaoxia Yuan

Utilizing solar energy requires accurate information about global solar radiation (GSR), which is critical for designers and manufacturers of solar energy systems and equipment. This study aims to examine the literature gaps by evaluating recent predictive models and categorizing them into various groups depending on the input parameters, and comprehensively collect the methods for classifying China into solar zones. The selected groups of models include those that use sunshine duration, temperature, dew-point temperature, precipitation, fog, cloud cover, day of the year, and different meteorological parameters (complex models). 220 empirical models are analyzed for estimating the GSR on a horizontal surface in China. Additionally, the most accurate models from the literature are summarized for 115 locations in China and are distributed into the above categories with the corresponding solar zone; the ideal models from each category and each solar zone are identified. Comments on two important temperature-based models that are presented in this work can help the researchers and readers to be unconfused when reading the literature of these models and cite them in a correct method in future studies. Machine learning techniques exhibit performance GSR estimation better than empirical models; however, the computational cost and complexity should be considered at choosing and applying these techniques. The models and model categories in this study, according to the key input parameters at the corresponding location and solar zone, are helpful to researchers as well as to designers and engineers of solar energy systems and equipment.


Author(s):  
Abdul Basit Da’ie

Solar energy properties such as Global Solar Radiation (GSR) intensity could be determined in either methods, experimentally or theoretically. Unfortunately, in most countries including Afghanistan, the first method which is more acceptable, but due to the high cost, maintenance and calibration requirements is not available. Therefore, an alternative widely used way is the second one which is model developments based on the meteorological (atmospheric) data; specially the sunny hours. The aim of this study at Shakardara area is to estimate atmospheric transparency percentage on 2017, determining the angstrom model coefficients and to introduce a suitable model for global solar radiation prediction. The hourly observed solar radiation intensity H (WHm-2 ) and sunshine hours S (


2017 ◽  
Vol 35 (7) ◽  
pp. 892-906
Author(s):  
David A. Gilliam ◽  
Teresa Preston ◽  
John R. Hall

Purpose Narratives are central to consumers’ understanding of brands especially during change. The financial crisis that began in 2008 offered a changing marketplace from which to develop two managerially useful frameworks of consumer narratives. The paper aims to discuss these issues. Design/methodology/approach Consumer focus groups, interviews with bankers and qualitative consumer surveys were used to gather consumers’ narratives about retail banking. The narratives were examined through frameworks from both the humanities and psychology (narrative identity). Findings The individual consumer narratives were used to create first a possible cultural narrative or bird’s eye view and later archetypal narratives of groups of consumers for a ground-level view of the changing marketplace. Research limitations/implications Like all early research, the findings must be examined in other contexts to improve generalizability. Practical implications The narrative results revealed the impact of change on consumers’ identities, views of other entities and retail banking activity to yield managerially actionable information for segmentation, target marketing, branding and communication. Originality/value Frameworks are developed for consumer narratives which are shown to be useful tools in examining consumers’ reactions to changing markets and in formulating marketing responses.


Author(s):  
Radian Belu

Artificial intelligence (AI) techniques play an important role in modeling, analysis, and prediction of the performance and control of renewable energy. The algorithms employed to model, control, or to predict performances of the energy systems are complicated involving differential equations, large computer power, and time requirements. Instead of complex rules and mathematical routines, AI techniques are able to learn the key information patterns within a multidimensional information domain. Design, control, and operation of solar energy systems require long-term series of meteorological data such as solar radiation, temperature, or wind data. Such long-term measurements are often non-existent for most of the interest locations or, wherever they are available, they suffer of a number of shortcomings (e.g. poor quality of data, insufficient long series, etc.). To overcome these problems AI techniques appear to be one of the strongest candidates. The chapter provides an overview of commonly used AI methodologies in solar energy, with a special emphasis on neural networks, fuzzy logic, and genetic algorithms. Selected AI applications to solar energy are outlined in this chapter. In particular, methods using the AI approach for the following applications are discussed: prediction and modeling of solar radiation, seizing, performances, and controls of the solar photovoltaic (PV) systems.


2019 ◽  
Vol 23 (1) ◽  
pp. 90-113 ◽  
Author(s):  
Michael Kötting ◽  
Andreas Kuckertz

Purpose The success of corporate innovation is based less upon the success of a single innovation program than on a holistic and overarching corporate innovation system integrating various activities. Taking this perspective, the purpose of this paper is to extend existing research on the design of innovation programs. Design/methodology/approach Utilizing an inductive theory-building case study approach, this study provides a detailed analysis of how one of the largest and most successful German technology companies structures its many innovation activities. Findings The analysis identifies key elements of innovation programs and suggests three configurations that illustrate how these generic elements can be structured so as to offer the best fit with the underlying logic of the respective innovation program. Furthermore, this study highlights how the identified configurations come together to deliver overarching strategic innovation goals. Originality/value Existing research too often focuses solely on single innovation programs. The current research is among the first to take a holistic and overarching perspective, considering different innovation programs within a single company and analyzing their configuration and their interplay.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Haixiang Zang ◽  
Qingshan Xu ◽  
Pengwei Du ◽  
Katsuhiro Ichiyanagi

A modified typical meteorological year (TMY) method is proposed for generating TMY from practical measured weather data. A total of eleven weather indices and novel assigned weighting factors are applied in the processing of forming the TMY database. TMYs of 35 cities in China are generated based on the latest and accurate measured weather data (dry bulb temperature, relative humidity, wind velocity, atmospheric pressure, and daily global solar radiation) in the period of 1994–2010. The TMY data and typical solar radiation data are also investigated and analyzed in this paper, which are important in the utilizations of solar energy systems.


2019 ◽  
Vol 14 (2) ◽  
pp. 408-418
Author(s):  
Reza Alayi ◽  
Alibakhsh Kasaeian ◽  
Atabak Najafi ◽  
Eskandar Jamali

Purpose The important factors, which should be considered in the design of a hybrid system of photovoltaic and wind energy are discussed in this study. The current load demand for electricity, as well as the load profile of solar radiation and wind power of the specified region chosen in Iran, is the basis of design and optimization in this study. Hybrid optimization model for electric renewable (HOMER) software was used to simulate and optimize hybrid energy system technically and economically. Design/methodology/approach HOMER software was used to simulate and optimize hybrid energy system technically and economically. Findings The maximum radiation intensity for the study area is 7.95 kwh/m2/day for July and the maximum wind speed for the study area is 11.02 m/s for January. Originality/value This research is the result of the original studies.


Kybernetes ◽  
2015 ◽  
Vol 44 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Sung-Hwan Kim ◽  
Nam-Uk Kim ◽  
Tai-Myoung Chung

Purpose – The purpose of this paper is to provide a model for quantitatively analyzing the security profile of an organization’s IT environment. The model considers the security risks associated with stored data, as well as services and devices that can act as channels for data leakages. The authors propose a sensitive information (SI) leakage vulnerability model. Design/methodology/approach – Factors identified as having an impact on the security profile are identified, and scores are assigned based on detailed criteria. These scores are utilized by mathematical models that produce a vulnerability index, which indicates the overall security vulnerability of the organization. In this chapter, the authors verify the model result extracted from SI leakage vulnerability weak index by applying the proposed model to an actual incident that occurred in South Korea in January 2014. Findings – The paper provides vulnerability result and vulnerability index. They are depends on SI state in information systems. Originality/value – The authors identify and define four core variables related to SI leakage: SI, security policy, and leakage channel and value of SI. The authors simplify the SI leakage problem. The authors propose a SI leakage vulnerability model.


2021 ◽  
Vol 9 (2) ◽  
Author(s):  
Mohammed Ali Jallal ◽  
◽  
Samira Chabaa ◽  
Abdelouhab Zeroual ◽  
◽  
...  

Precise global solar radiation (GSR) measurements in a given location are very essential for designing and supervising solar energy systems. In the case of rarity or absence of these measurements, it is important to have a theoretical or empirical model to compute the GSR values. Therefore, the main goal of this work is to offer, to designers and engineers of solar energy systems, an appropriate and accurate way to predict the half-hour global solar radiation (HHGSR) time series from some available meteorological parameters (relative humidity, air temperature, wind speed, precipitation, and acquisition time vector in half-hour scale). For that purpose, two intelligent models are developed: the first one is a multivariate dynamic neural network with feedback connection, and the second is a multivariate static neural network. The database used to build these models was recorded in Agdal’s meteorological station in Marrakesh, Morocco, during the years of 2013 and 2014, and it was divided into two subsets. The first subset is used for training and validating the models, and the second subset is used for testing the efficiency and the robustness of the developed models. The obtained results, in terms of the statistical performance indicators, demonstrate the efficiency of the developed forecasting models to accurately predict the HHGSR parameter in the city of Marrakesh, Morocco.


Sign in / Sign up

Export Citation Format

Share Document