High energy heavy-ion-induced single event transients in epitaxial structures

1994 ◽  
Vol 41 (6) ◽  
pp. 2018-2025 ◽  
Author(s):  
H. Dussault ◽  
J.W. Howard ◽  
R.C. Block ◽  
M.R. Pinto ◽  
W.J. Stapor ◽  
...  
2019 ◽  
Vol 66 (1) ◽  
pp. 177-183
Author(s):  
Zhenyu Wu ◽  
Shuming Chen ◽  
Jianjun Chen ◽  
Pengcheng Huang

Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2030
Author(s):  
Bing Ye ◽  
Li-Hua Mo ◽  
Tao Liu ◽  
You-Mei Sun ◽  
Jie Liu

The on-orbit single-event upset (SEU) rate of nanodevices is closely related to the orbital parameters. In this paper, the on-orbit SEU rate (OOSR) induced by a heavy ion (HI), high-energy proton (HEP) and low-energy proton (LEP) for a 65 nm SRAM device is calculated by using the software SPACE RADIATION under different orbits based on the experimental data. The results indicate that the OOSR induced by the HI, HEP and LEP varies with the orbital parameters. In particular, the orbital height, inclination and shieling thickness are the key parameters that affect the contribution of the LEP to the total OOSR. Our results provide guidance for the selection of nanodevices on different orbits.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1531 ◽  
Author(s):  
Chang Cai ◽  
Shuai Gao ◽  
Peixiong Zhao ◽  
Jian Yu ◽  
Kai Zhao ◽  
...  

Radiation effects can induce severe and diverse soft errors in digital circuits and systems. A Xilinx commercial 16 nm FinFET static random-access memory (SRAM)-based field-programmable gate array (FPGA) was selected to evaluate the radiation sensitivity and promote the space application of FinFET ultra large-scale integrated circuits (ULSI). Picosecond pulsed laser and high energy heavy ions were employed for irradiation. Before the tests, SRAM-based configure RAMs (CRAMs) were initialized and configured. The 100% embedded block RAMs (BRAMs) were utilized based on the Vivado implementation of the compiled hardware description language. No hard error was observed in both the laser and heavy-ion test. The thresholds for laser-induced single event upset (SEU) were ~3.5 nJ, and the SEU cross-sections were correlated positively to the laser’s energy. Multi-bit upsets were measured in heavy-ion and high-energy laser irradiation. Moreover, latch-up and functional interrupt phenomena were common, especially in the heavy-ion tests. The single event effect results for the 16 nm FinFET process were significant, and some radiation tolerance strategies were required in a radiation environment.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 624
Author(s):  
Anquan Wu ◽  
Bin Liang ◽  
Yaqing Chi ◽  
Zhenyu Wu

The reliability of integrated circuits under advanced process nodes is facing more severe challenges. Single-event transients (SET) are an important cause of soft errors in space applications. The SET caused by heavy ions in the 28 nm bulk silicon inverter chains was studied. A test chip with good symmetry layout design was fabricated based on the 28 nm process, and the chip was struck by using 5 kinds of heavy ions with different linear energy transfer (LET) values on heavy-ion accelerator. The research results show that in advanced technology, smaller sensitive volume makes SET cross-section measured at 28 nm smaller than 65 nm by an order of magnitude, the lower critical charge required to generate SET will increase the reliability threat of low-energy ions to the circuit, and high-energy ions are more likely to cause single-event multiple transient (SEMT), which cannot be ignored in practical circuits. The transients pulse width data can be used as a reference for SET modeling in complex circuits.


Author(s):  
Khushwant Sehra ◽  
Vandana Kumari ◽  
Mridula Gupta ◽  
Meena Mishra ◽  
D. S. Rawal ◽  
...  

2019 ◽  
Vol 66 (1) ◽  
pp. 359-367 ◽  
Author(s):  
Adrian Ildefonso ◽  
Zachary E. Fleetwood ◽  
George N. Tzintzarov ◽  
Joel M. Hales ◽  
Delgermaa Nergui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document