High-performance large-area InGaAs MSM photodetectors with a pseudomorphic InGaP cap layer

1995 ◽  
Vol 7 (8) ◽  
pp. 914-916 ◽  
Author(s):  
Rong-Heng Yuang ◽  
Hung-Chang Shieh ◽  
Yi-Jiunn Chien ◽  
Yi-Jen Chan ◽  
Jen-Inn Chyi ◽  
...  
Author(s):  
Mahesh Soni ◽  
Dhayalan Shakthivel ◽  
Adamos Christou ◽  
Ayoub Zumeit ◽  
Nivasan Yogeswaran ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2163
Author(s):  
Dongjin Kim ◽  
Seungyong Han ◽  
Taewi Kim ◽  
Changhwan Kim ◽  
Doohoe Lee ◽  
...  

As the safety of a human body is the main priority while interacting with robots, the field of tactile sensors has expanded for acquiring tactile information and ensuring safe human–robot interaction (HRI). Existing lightweight and thin tactile sensors exhibit high performance in detecting their surroundings. However, unexpected collisions caused by malfunctions or sudden external collisions can still cause injuries to rigid robots with thin tactile sensors. In this study, we present a sensitive balloon sensor for contact sensing and alleviating physical collisions over a large area of rigid robots. The balloon sensor is a pressure sensor composed of an inflatable body of low-density polyethylene (LDPE), and a highly sensitive and flexible strain sensor laminated onto it. The mechanical crack-based strain sensor with high sensitivity enables the detection of extremely small changes in the strain of the balloon. Adjusting the geometric parameters of the balloon allows for a large and easily customizable sensing area. The weight of the balloon sensor was approximately 2 g. The sensor is employed with a servo motor and detects a finger or a sheet of rolled paper gently touching it, without being damaged.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Muhammad Naqi ◽  
Kyung Hwan Choi ◽  
Hocheon Yoo ◽  
Sudong Chae ◽  
Bum Jun Kim ◽  
...  

AbstractLow-temperature-processed semiconductors are an emerging need for next-generation scalable electronics, and these semiconductors need to feature large-area fabrication, solution processability, high electrical performance, and wide spectral optical absorption properties. Although various strategies of low-temperature-processed n-type semiconductors have been achieved, the development of high-performance p-type semiconductors at low temperature is still limited. Here, we report a unique low-temperature-processed method to synthesize tellurium nanowire networks (Te-nanonets) over a scalable area for the fabrication of high-performance large-area p-type field-effect transistors (FETs) with uniform and stable electrical and optical properties. Maximum mobility of 4.7 cm2/Vs, an on/off current ratio of 1 × 104, and a maximum transconductance of 2.18 µS are achieved. To further demonstrate the applicability of the proposed semiconductor, the electrical performance of a Te-nanonet-based transistor array of 42 devices is also measured, revealing stable and uniform results. Finally, to broaden the applicability of p-type Te-nanonet-based FETs, optical measurements are demonstrated over a wide spectral range, revealing an exceptionally uniform optical performance.


2021 ◽  
Vol 17 ◽  
pp. 100352
Author(s):  
S.-J. Wang ◽  
M. Sawatzki ◽  
H. Kleemann ◽  
I. Lashkov ◽  
D. Wolf ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Changjiu Sun ◽  
Yuanzhi Jiang ◽  
Minghuan Cui ◽  
Lu Qiao ◽  
Junli Wei ◽  
...  

AbstractSerious performance decline arose for perovskite light-emitting diodes (PeLEDs) once the active area was enlarged. Here we investigate the failure mechanism of the widespread active film fabrication method; and ascribe severe phase-segregation to be the reason. We thereby introduce L-Norvaline to construct a COO−-coordinated intermediate phase with low formation enthalpy. The new intermediate phase changes the crystallization pathway, thereby suppressing the phase-segregation. Accordingly, high-quality large-area quasi-2D films with desirable properties are obtained. Based on this, we further rationally adjusted films’ recombination kinetics. We reported a series of highly-efficient green quasi-2D PeLEDs with active areas of 9.0 cm2. The peak EQE of 16.4% is achieved in <n > = 3, represent the most efficient large-area PeLEDs yet. Meanwhile, high brightness device with luminance up to 9.1 × 104 cd m−2 has achieved in <n> = 10 film.


2021 ◽  
Author(s):  
Eun Seop Yoon ◽  
Bong Gill Choi ◽  
Hwan-Jin Jeon

Abstract The development of energy storage electrode materials is important for enhancing the electrochemical performance of supercapacitors. Despite extensive research on improving electrochemical performance with polymer-based materials, electrode materials with micro/nanostructures are needed for fast and efficient ion and electron transfer. In this work, highly ordered phosphomolybdate (PMoO)-grafted polyaniline (PMoO-PAI) deposited onto Au hole-cylinder nanopillar arrays is developed for high-performance pseudocapacitors. The three-dimensional nanostructured arrays are easily fabricated by secondary sputtering lithography, which has recently gained attention and features a high resolution of 10 nm, a high aspect ratio greater than 20, excellent uniformity/accuracy/precision, and compatibility with large area substrates. These 10nm scale Au nanostructures with a high aspect ratio of ~30 on Au substrates facilitate efficient ion and electron transfer. The resultant PMoO-PAI electrode exhibits outstanding electrochemical performance, including a high specific capacitance of 114 mF/cm2, a high-rate capability of 88%, and excellent long-term stability.


Sign in / Sign up

Export Citation Format

Share Document