scholarly journals Evaluation of magnetomotive force and torque ripples in modular type IPMSM with multi three-phase winding configurations

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Sayyed Haleem Shah ◽  
Xiaoyuan Wang ◽  
Muhammad Azeem ◽  
Usman Abubakar
Author(s):  
Cezary Jedryczka

Purpose The purpose of this paper is to analyse and compare the functional parameters of three- and six-phase permanent magnet synchronous motors (PMSM) with fractional-slot concentrated windings (FSCW). Design/methodology/approach The investigations are focused on the comparison of the distortions of back electromotive force (emf) and magnetomotive force (mmf) waveforms, as well as torque ripples, radial force spatial harmonics and motor performance studies. The finite element models of the test machine and a personally developed computer code have been used to calculate motor characteristics and analyse and synthesise multiphase winding layouts, respectively. Findings Compared with the traditional three-phase PMSM designs, the proposed six-phase machines are characterized by a significantly lower content of sub-harmonics in mmf waveform distribution. Moreover, the investigated six-phase machines exhibited a higher average value of electromagnetic torque, significantly lower torque ripples and a reduced value of low-order harmonics of the radial component of the electromagnetic force in the air-gap of the machine. Originality/value The analyses presented in this paper show that six-phase PMSM with FSCWs are advantageous to their counterpart three-phase machines. Specifically, they are more suited to working with multiple drives supplying a segmented winding system while simultaneously offering higher performance. This suitability to the use of a multi-drive supply for one motor offers flexibility and cost reduction while increasing the fault tolerance of a power train system.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1721
Author(s):  
Syed Sabir Hussain Bukhari ◽  
Fareed Hussain Mangi ◽  
Irfan Sami ◽  
Qasim Ali ◽  
Jong-Suk Ro

This paper discusses the design and analysis of a high-harmonic injection-based field excitation scheme for the brushless operation of wound field synchronous machines (WFSMs) in order to achieve a higher efficiency. The proposed scheme involves two inverters. One of these inverters provides the three-phase fundamental-harmonic current to the armature winding, whereas the second inverter injects the single-phase high-harmonic i.e., 6th harmonic current in this case, to the neutral-point of the Y-connected armature winding. The injection of the high-harmonic current in the armature winding develops the high-harmonic magnetomotive force (MMF) in the air gap of the machine beside the fundamental. The high-harmonic MMF induces the harmonic current in the excitation winding of the rotor, whereas the fundamental MMF develops the main armature field. The harmonic current is rectified to inject the direct current (DC) into the main rotor field winding. The main armature and rotor fields, when interacting with each other, produce torque. Finite element analysis (FEA) is carried out in order to develop a 4-pole 24-slot machine and investigate it using a 6th harmonic current injection for the rotor field excitation to both attain a brushless operation and analyze its electromagnetic performance. Later on, the performance of the proposed topology is compared with the typical brushless WFSM topology employing the 3rd harmonic current injection-based field excitation scheme.


Actuators ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 253
Author(s):  
Aleksander Suti ◽  
Gianpietro Di Rito ◽  
Roberto Galatolo

This paper deals with the development and the performance characterization of a novel Fault-Tolerant Control (FTC) aiming to the diagnosis and accommodation of electrical faults in a three-phase Permanent Magnet Synchronous Motor (PMSM) employed for the propulsion of a modern lightweight fixed-wing UAV. To implement the fault-tolerant capabilities, a four-leg inverter is used to drive the reference PMSM, so that a system reconfiguration can be applied in case of a motor phase fault or an inverter fault, by enabling the control of the central point of the three-phase connection. A crucial design point is to develop Fault-Detection and Isolation (FDI) algorithms capable of minimizing the system failure transients, which are typically characterized by high-amplitude high-frequency torque ripples. The proposed FTC is composed of two sections: in the first, a deterministic model-based FDI algorithm is used, based the evaluation of the current phasor trajectory in the Clarke’s plane; in the second, a novel technique for fault accommodation is implemented by applying a reference frame transformation to post-fault commands. The FTC effectiveness is assessed via detailed nonlinear simulation (including sensors errors, digital signal processing, mechanical transmission compliance, propeller loads and electrical faults model), by characterizing the FDI latency and the post-fault system performances when open circuit faults are injected. Compared with reports in the literature, the proposed FTC demonstrates relevant potentialities: the FDI section of the algorithm provides the smallest ratio between latency and monitoring samples per electrical period, while the accommodation section succeeds in both eliminating post-fault torque ripples and maintaining the mechanical power output with negligible efficiency degradation.


Author(s):  
Cezary Jedryczka ◽  
Wojciech Szelag ◽  
Zbigniew Jerry Piech

Purpose The purpose of this paper is to investigate advantages of multiphase permanent magnet synchronous motors (PMSM) with fractional slot concentrated windings (FSCW). The investigation is based on comparative analysis and assessment of FSCW PMSM wound as 3, 6, 9 and 12 phase machines suited for low speed applications. Design/methodology/approach The investigations are focussed on distortions of back electromotive (emf) and magnetomotive force (mmf) with the torque ripples and motors’ performance taken into account. The finite element models with the aid of customized computer code have been adopted for motor winding design and back emf, mmf and motor performance analyses. Findings The novel multiphase winding layouts were found to offer lower content of sub-harmonics in the mmf waveforms compared with the traditional three-phase machine designs. Moreover, the investigated multiphase machines exhibited higher average value of the electromagnetic torque, while the multiphase PMSM machines with FSCW were further characterized by significantly lower torque pulsations. Originality/value The analyses presented in this paper demonstrate that PMSM with FSCW are advantageous to their counterpart three-phase machines. Specifically, they offer higher performance and are more suitable to work with multiple drives supplying segmented winding system. This ability of using multi-drive supply for one motor offers flexibility and cost reduction while increasing fault tolerant power train system.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1799
Author(s):  
Prabhat Ranjan Tripathi ◽  
Vijaya Laxmi ◽  
Ritesh Kumar Keshri ◽  
Amitkumar Vidyakant Jha ◽  
Bhargav Appasani ◽  
...  

The present article proposes a three-phase resonant boost inverter (TPRBI) to feed a permanent magnet brushless DC (PMBLDC) motor at the requested torque with low ripples due to the sinusoidal current injected into the PMBLDC motor. PMBLDC motors have the highest torque-to-weight ratio compared to other motors and are the best choice for electric vehicle applications. Conventionally, these motors are driven by voltage source inverters (VSI) with trapezoidal current injection, introducing unwanted torque ripples. Moreover, due to the buck operation of VSI, an extra power conversion stage is required to elevate the battery voltage level to desired DC-link voltage. This extra stage increases the number of components used, complexity of control and decreases the efficiency and reliability of the overall system. TPRBI injects sinusoidal current in the PMBLDC motor in the proposed method, thus minimizing the torque ripples. The proposed inverter also has an inherent voltage boost characteristic, thus eliminating the extra power conversion stage. The single-stage conversion from DC to boosted sinusoidal AC enhances the system reliability and efficiency and minimizes the cost and weight of the system. A MATLAB/Simulink model is presented along with simulation results and mathematical validation. A comparative evaluation of the proposed system with the conventional VSI-fed PMBLDC motor is presented in terms of induced torque ripples.


2020 ◽  
Vol 9 (1) ◽  
pp. 1196-1202 ◽  

Three phase induction motor drives are the most widely used drives in heavy load industries Because of its wide usage in industry, a small fault occurring in the motor drive may cause huge damage and results in failure of heavy machinaries.Inorder to avoid these failures, all the possible faults that may occur in induction motors are analysed. Based on the analysis performed, the parameters that may cause faults in the drive system are monitored. Even a minute change in the parameters are monitored using an intelligent control method named Fuzzy based monitoring system. In this monitoring system, induction motor drive is adopted with a direct torque control method to avoid the usual torque ripples present in the system. Thisintelligent fault monitoring system is used to take corrective measures within a specified time when the drive is implemented in an electric vehicle applications.


2013 ◽  
Vol 313-314 ◽  
pp. 55-60
Author(s):  
Ridwan Gunawan ◽  
Muhammad Luniara Siregar ◽  
Feri Yusivar

The vector control has become the first alternative in control of three phase induction motor. One of the vector control method which is commonly used is the direct torque control (DTC) method. However, this system has drawback due to the existence of torque ripples. The addition of the duty ratio control base on fuzzy logic can give better performance compared to conventional DTC. By doing an examination on DTC and duty ratio using small, medium and big capacities of three phase induction motors can be shown the influence from moment of inertia to rotor rotation. This paper uses MATLAB SIMULINK for the simulation study with three types of motor power, for example 1, 10 and 50 hp. It is shown that using the same parameters, a motor with a larger moment inertia gives a better performance in comparison to a motor with smaller moment of inertia.


Author(s):  
Hossein Valiyan Holagh ◽  
Tooraj Abbasian Najafabadi ◽  
Hossein Safamehr

Abstract A four-switch inverter called the B4 inverter is a reconfigured topology of a B6 inverter, one leg of which is damaged. The four-switch topology provides the overall system with fault-tolerant characteristics. However, this reconfiguration will not only change the system dynamics but also degrade the system performance. For overcoming with these issues, this paper presents an adaptive switching method based on DC-link voltage control. In the proposed method, the selection of active vectors and the calculation of switching times are made according to an adaptive, observer-based algorithm which will reduce DC-link voltage oscillations and adjust unbalanced currents fed to induction machines. In this algorithm, an online, designed observer is utilized so as to estimate the DC amount of the DC-link voltage. Applying this method, we will decrease flux and torque ripples as well as increase the inverter efficiency and performance. The simulation results presented in the MATLAB environment evaluate and validate the performance and effectiveness of this approach.


Author(s):  
حمدى محمد سليمان

This paper aims to reduce the torque ripples in the motor torque, reduce the total harmonics distortion in the motor currents and improve the dynamic response of the permanent magnet synchronous motor. To carry out this study, a modification model was used and compared to conventional model. The main control method used here is a field-oriented control. It was used to generate two decoupled currents control. With help of rotor position, these currents changing into three-phase reference currents. These reference currents were compared to the actual three-phase motor currents. The errors among these currents are introduced to hysteresis current controller to get pulses. These pulses used to drive the voltage source inverter which produces three-phase voltage to drive the motor under study. This technique suffers from some problems as high torque ripples, high total harmonics distortion, the dynamic response isn’t very high because at the beginning of the error and the deviation of the output signal becomes large. This is a conventional model. To overcome these problems, the hysteresis current controller was replaced by gain impedance. The output of this gain is the three-phase voltages. These voltages generate pulses through space vector modulation to drive the inverter to get suitable voltage for the permanent magnet synchronous motor. This modification has decreased the torque ripples and the THD in comparison to the conventional controller. To more improvement in the motor performance, one PI torque current controller and load torque estimator were used to damp the overshooting and decrease the rise time.


Sign in / Sign up

Export Citation Format

Share Document