Multi-Objective Four-Dimensional Glider Path Planning using NSGA-II

Author(s):  
Carlos Lucas ◽  
Daniel Hernadez-Sosa ◽  
Rui Caldeira
Author(s):  
DongSeop Lee ◽  
Jacques Periaux ◽  
Luis Felipe Gonzalez

This paper presents the application of advanced optimization techniques to Unmanned Aerial Systems (UAS) Mission Path Planning System (MPPS) using Multi-Objective Evolutionary Algorithms (MOEAs). Two types of multi-objective optimizers are compared; the MOEA Non-dominated Sorting Genetic Algorithms II (NSGA-II) and a Hybrid Game strategy are implemented to produce a set of optimal collision-free trajectories in three-dimensional environment. The resulting trajectories on a three-dimension terrain are collision-free and are represented by using Be´zier spline curves from start position to target and then target to start position or different position with altitude constraints. The efficiency of the two optimization methods is compared in terms of computational cost and design quality. Numerical results show the benefits of adding a Hybrid-Game strategy to a MOEA and for a MPPS.


2018 ◽  
Vol 8 (11) ◽  
pp. 2253 ◽  
Author(s):  
Yang Xue

In many areas, such as mobile robots, video games and driverless vehicles, path planning has always attracted researchers’ attention. In the field of mobile robotics, the path planning problem is to plan one or more viable paths to the target location from the starting position within a given obstacle space. Evolutionary algorithms can effectively solve this problem. The non-dominated sorting genetic algorithm (NSGA-II) is currently recognized as one of the evolutionary algorithms with robust optimization capabilities and has solved various optimization problems. In this paper, NSGA-II is adopted to solve multi-objective path planning problems. Three objectives are introduced. Besides the usual selection, crossover and mutation operators, some practical operators are applied. Moreover, the parameters involved in the algorithm are studied. Additionally, another evolutionary algorithm and quality metrics are employed for examination. Comparison results demonstrate that non-dominated solutions obtained by the algorithm have good characteristics. Subsequently, the path corresponding to the knee point of non-dominated solutions is shown. The path is shorter, safer and smoother. This path can be adopted in the later decision-making process. Finally, the above research shows that the revised algorithm can effectively solve the multi-objective path planning problem in static environments.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5506 ◽  
Author(s):  
Carlos Lucas ◽  
Daniel Hernández-Sosa ◽  
David Greiner ◽  
Aleš Zamuda ◽  
Rui Caldeira

Underwater gliders are energy-efficient vehicles that rely on changes in buoyancy in order to convert up and down movement into forward displacement. These vehicles are conceived as multi-sensor platforms, and can be used to collect ocean data for long periods in wide range areas. This endurance is achieved at the cost of low speed, which requires extensive planning to ensure vehicle safety and mission success, particularly when dealing with strong ocean currents. As gliders are often involved on missions that pursue multiple objectives (track events, reach a target point, avoid obstacles, sample specified areas, save energy), path planning requires a way to deal with several constraints at the same time; this makes glider path planning a multi-objective (MO) optimization problem. In this work, we analyse the usage of the non-dominated sorting genetic algorithm II (NSGA-II) to tackle a MO glider path planning application on a complex environment integrating 3D and time varying ocean currents. Multiple experiments using a glider kinematic simulator coupled with NSGA-II, combining different control parameters were carried out, to find the best parameter configuration that provided suitable paths for the desired mission. Ultimately, the system described in this work was able to optimize multi-objective trajectories, providing non dominated solutions. Such a planning tool could be of great interest in real mission planning, to assist glider pilots in selecting the most convenient paths for the vehicle, taking into account ocean forecasts and particular characteristics of the deployment location.


2020 ◽  
Vol 39 (3) ◽  
pp. 3259-3273
Author(s):  
Nasser Shahsavari-Pour ◽  
Najmeh Bahram-Pour ◽  
Mojde Kazemi

The location-routing problem is a research area that simultaneously solves location-allocation and vehicle routing issues. It is critical to delivering emergency goods to customers with high reliability. In this paper, reliability in location and routing problems was considered as the probability of failure in depots, vehicles, and routs. The problem has two objectives, minimizing the cost and maximizing the reliability, the latter expressed by minimizing the expected cost of failure. First, a mathematical model of the problem was presented and due to its NP-hard nature, it was solved by a meta-heuristic approach using a NSGA-II algorithm and a discrete multi-objective firefly algorithm. The efficiency of these algorithms was studied through a complete set of examples and it was found that the multi-objective discrete firefly algorithm has a better Diversification Metric (DM) index; the Mean Ideal Distance (MID) and Spacing Metric (SM) indexes are only suitable for small to medium problems, losing their effectiveness for big problems.


Machines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 107
Author(s):  
Rongchao Jiang ◽  
Zhenchao Jin ◽  
Dawei Liu ◽  
Dengfeng Wang

In order to reduce the negative effect of lightweighting of suspension components on vehicle dynamic performance, the control arm and torsion beam widely used in front and rear suspensions were taken as research objects for studying the lightweight design method of suspension components. Mesh morphing technology was employed to define design variables. Meanwhile, the rigid–flexible coupling vehicle model with flexible control arm and torsion beam was built for vehicle dynamic simulations. The total weight of control arm and torsion beam was taken as optimization objective, as well as ride comfort and handling stability performance indexes. In addition, the fatigue life, stiffness, and modal frequency of control arm and torsion beam were taken as the constraints. Then, Kriging model and NSGA-II were adopted to perform the multi-objective optimization of control arm and torsion beam for determining the lightweight scheme. By comparing the optimized and original design, it indicates that the weight of the optimized control arm and torsion beam are reduced 0.505 kg and 1.189 kg, respectively, while structural performance and vehicle performance satisfy the design requirement. The proposed multi-objective optimization method achieves a remarkable mass reduction, and proves to be feasible and effective for lightweight design of suspension components.


2021 ◽  
Vol 26 (2) ◽  
pp. 36
Author(s):  
Alejandro Estrada-Padilla ◽  
Daniela Lopez-Garcia ◽  
Claudia Gómez-Santillán ◽  
Héctor Joaquín Fraire-Huacuja ◽  
Laura Cruz-Reyes ◽  
...  

A common issue in the Multi-Objective Portfolio Optimization Problem (MOPOP) is the presence of uncertainty that affects individual decisions, e.g., variations on resources or benefits of projects. Fuzzy numbers are successful in dealing with imprecise numerical quantities, and they found numerous applications in optimization. However, so far, they have not been used to tackle uncertainty in MOPOP. Hence, this work proposes to tackle MOPOP’s uncertainty with a new optimization model based on fuzzy trapezoidal parameters. Additionally, it proposes three novel steady-state algorithms as the model’s solution process. One approach integrates the Fuzzy Adaptive Multi-objective Evolutionary (FAME) methodology; the other two apply the Non-Dominated Genetic Algorithm (NSGA-II) methodology. One steady-state algorithm uses the Spatial Spread Deviation as a density estimator to improve the Pareto fronts’ distribution. This research work’s final contribution is developing a new defuzzification mapping that allows measuring algorithms’ performance using widely known metrics. The results show a significant difference in performance favoring the proposed steady-state algorithm based on the FAME methodology.


Sign in / Sign up

Export Citation Format

Share Document