A Deep Learning Model for Early Detection of Fake News on Social Media*

Author(s):  
Pakindessama M. Konkobo ◽  
Rui Zhang ◽  
Siyuan Huang ◽  
Toussida T. Minoungou ◽  
Jose A. Ouedraogo ◽  
...  
Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Nida Aslam ◽  
Irfan Ullah Khan ◽  
Farah Salem Alotaibi ◽  
Lama Abdulaziz Aldaej ◽  
Asma Khaled Aldubaikil

Pervasive usage and the development of social media networks have provided the platform for the fake news to spread fast among people. Fake news often misleads people and creates wrong society perceptions. The spread of low-quality news in social media has negatively affected individuals and society. In this study, we proposed an ensemble-based deep learning model to classify news as fake or real using LIAR dataset. Due to the nature of the dataset attributes, two deep learning models were used. For the textual attribute “statement,” Bi-LSTM-GRU-dense deep learning model was used, while for the remaining attributes, dense deep learning model was used. Experimental results showed that the proposed study achieved an accuracy of 0.898, recall of 0.916, precision of 0.913, and F-score of 0.914, respectively, using only statement attribute. Moreover, the outcome of the proposed models is remarkable when compared with that of the previous studies for fake news detection using LIAR dataset.


2021 ◽  
Author(s):  
Gaurav Chachra ◽  
Qingkai Kong ◽  
Jim Huang ◽  
Srujay Korlakunta ◽  
Jennifer Grannen ◽  
...  

Abstract After significant earthquakes, we can see images posted on social media platforms by individuals and media agencies owing to the mass usage of smartphones these days. These images can be utilized to provide information about the shaking damage in the earthquake region both to the public and research community, and potentially to guide rescue work. This paper presents an automated way to extract the damaged building images after earthquakes from social media platforms such as Twitter and thus identify the particular user posts containing such images. Using transfer learning and ~6500 manually labelled images, we trained a deep learning model to recognize images with damaged buildings in the scene. The trained model achieved good performance when tested on newly acquired images of earthquakes at different locations and ran in near real-time on Twitter feed after the 2020 M7.0 earthquake in Turkey. Furthermore, to better understand how the model makes decisions, we also implemented the Grad-CAM method to visualize the important locations on the images that facilitate the decision.


2021 ◽  
Vol 11 (17) ◽  
pp. 7940
Author(s):  
Mohammed Al-Sarem ◽  
Abdullah Alsaeedi ◽  
Faisal Saeed ◽  
Wadii Boulila ◽  
Omair AmeerBakhsh

Spreading rumors in social media is considered under cybercrimes that affect people, societies, and governments. For instance, some criminals create rumors and send them on the internet, then other people help them to spread it. Spreading rumors can be an example of cyber abuse, where rumors or lies about the victim are posted on the internet to send threatening messages or to share the victim’s personal information. During pandemics, a large amount of rumors spreads on social media very fast, which have dramatic effects on people’s health. Detecting these rumors manually by the authorities is very difficult in these open platforms. Therefore, several researchers conducted studies on utilizing intelligent methods for detecting such rumors. The detection methods can be classified mainly into machine learning-based and deep learning-based methods. The deep learning methods have comparative advantages against machine learning ones as they do not require preprocessing and feature engineering processes and their performance showed superior enhancements in many fields. Therefore, this paper aims to propose a Novel Hybrid Deep Learning Model for Detecting COVID-19-related Rumors on Social Media (LSTM–PCNN). The proposed model is based on a Long Short-Term Memory (LSTM) and Concatenated Parallel Convolutional Neural Networks (PCNN). The experiments were conducted on an ArCOV-19 dataset that included 3157 tweets; 1480 of them were rumors (46.87%) and 1677 tweets were non-rumors (53.12%). The findings of the proposed model showed a superior performance compared to other methods in terms of accuracy, recall, precision, and F-score.


Food is one of the basic needs of human being. We know that the population is rising enormously.so it is more important to feed such a huge population. But nowadays plants are largely affected with various types of diseases. If proper care should not be taken then it will show effect on quality of food products, quantity and finally on productivity of crops.. so, Early detection of plant disease is very essential, but it is very hard to farmers to monitor the crops manually it takes more processing time, huge amount of work, expensive and need expertised persons. Automatic detection of plant diseases helps the farmers to monitor the large fields easily,because our approach of using convolution neural networks provides a chance to discover diseases at the very early stage. By using Image Processing and machine learning models we can detect the plant diseases automatically but the accuracy is very less, early detection is also a major challenge. With the modern advanced developments in deep learning, in our project we have implemented the convolution neural networks(CNN) which comprises of different layers,by using those layers we can automatically detect and classify the diseases present in the plants. High Classification accuracy and more processing speed are the main advantages of our approach. After training the model on color, grayscale and segmented datasets our deep learning model will be capable of classifying a large number of different diseases and our project gives us the name of the disease that the plant has with its confidence level and also provides remedies for corresponding diseases


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256500
Author(s):  
Maleika Heenaye-Mamode Khan ◽  
Nazmeen Boodoo-Jahangeer ◽  
Wasiimah Dullull ◽  
Shaista Nathire ◽  
Xiaohong Gao ◽  
...  

The real cause of breast cancer is very challenging to determine and therefore early detection of the disease is necessary for reducing the death rate due to risks of breast cancer. Early detection of cancer boosts increasing the survival chance up to 8%. Primarily, breast images emanating from mammograms, X-Rays or MRI are analyzed by radiologists to detect abnormalities. However, even experienced radiologists face problems in identifying features like micro-calcifications, lumps and masses, leading to high false positive and high false negative. Recent advancement in image processing and deep learning create some hopes in devising more enhanced applications that can be used for the early detection of breast cancer. In this work, we have developed a Deep Convolutional Neural Network (CNN) to segment and classify the various types of breast abnormalities, such as calcifications, masses, asymmetry and carcinomas, unlike existing research work, which mainly classified the cancer into benign and malignant, leading to improved disease management. Firstly, a transfer learning was carried out on our dataset using the pre-trained model ResNet50. Along similar lines, we have developed an enhanced deep learning model, in which learning rate is considered as one of the most important attributes while training the neural network. The learning rate is set adaptively in our proposed model based on changes in error curves during the learning process involved. The proposed deep learning model has achieved a performance of 88% in the classification of these four types of breast cancer abnormalities such as, masses, calcifications, carcinomas and asymmetry mammograms.


2018 ◽  
Author(s):  
Eric Z. Chen ◽  
Xu Dong ◽  
Junyan Wu ◽  
Hongda Jiang ◽  
Xiaoxiao Li ◽  
...  

ABSTRACTMelanoma is the most deadly form of skin cancer world-wide. Many efforts have been made for early detection of melanoma. The International Skin Imaging Collaboration (ISIC) hosted the 2018 Challenges to improve the diagnosis of melanoma based on dermoscopic images. In this paper, we describe our solution for the task 2 of ISIC 2018 Challenges. We present a multi-task U-Net model to automatically detect lesion attributes of melanoma. Our multi-task U-Net deep learning model achieves a Jaccard index of 0.433 on official test data, which ranks the 5th place on the final leaderboard.


2021 ◽  
Author(s):  
Xinyu Zeng ◽  
Zifan Jiang ◽  
Wen Luo ◽  
Honggui Li ◽  
Hongye Li ◽  
...  

Abstract Early detection and appropriate medical treatment is of great use for ear disease. However, a new diagnostic strategy is necessary in the absence of experts and relatively low diagnostic accuracy, in which deep learning plays an important role. This paper puts forward a mechanic learning model which uses abundant otoscope image data gained in the clinical cases in order to achieve automatic diagnosis of ear diseases in real time. A total of 20,542 endoscopic images were employed to train nine common deep convolution neural networks. According to the characteristics of eardrum and external auditory canal, eight kinds of ear diseases were classified, involving the majority of ear diseases, such as normal, Cholestestoma of middle ear, Chronic suppurative otitis media, External auditory cana bleeding, Impacted cerumen, Otomycosis external, Secretory otitis media, Tympanic membrane calcification. After we evaluate these optimization schemes, two best performance models are selected to combine the ensemble classifiers with real-time automatic classification. Based on accuracy and training time, we choose a transferring learning model based on DensNet-BC169 and DensNet-BC1615, getting a result that each model has obvious improvement by using these two ensemble classifiers, and has average accuracy of 95.59%. Considering the dependence of classifier performance on data size in transfer learning, we evaluate the high accuracy of the current model that can be attributed to large databases. Current studies are unparalleled regarding disease diversity and diagnostic precision. The real-time classifier trains the data under different acquisition conditions, which is suitable for the real cases. According to this study, in the clinical case, deep learning model is of great use in early detection and remedy of ear diseases.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Bader Alouffi ◽  
Abdullah Alharbi ◽  
Radhya Sahal ◽  
Hager Saleh

Fake news is challenging to detect due to mixing accurate and inaccurate information from reliable and unreliable sources. Social media is a data source that is not trustworthy all the time, especially in the COVID-19 outbreak. During the COVID-19 epidemic, fake news is widely spread. The best way to deal with this is early detection. Accordingly, in this work, we have proposed a hybrid deep learning model that uses convolutional neural network (CNN) and long short-term memory (LSTM) to detect COVID-19 fake news. The proposed model consists of some layers: an embedding layer, a convolutional layer, a pooling layer, an LSTM layer, a flatten layer, a dense layer, and an output layer. For experimental results, three COVID-19 fake news datasets are used to evaluate six machine learning models, two deep learning models, and our proposed model. The machine learning models are DT, KNN, LR, RF, SVM, and NB, while the deep learning models are CNN and LSTM. Also, four matrices are used to validate the results: accuracy, precision, recall, and F1-measure. The conducted experiments show that the proposed model outperforms the six machine learning models and the two deep learning models. Consequently, the proposed system is capable of detecting the fake news of COVID-19 significantly.


Sign in / Sign up

Export Citation Format

Share Document