Simulations of Point-to-Point Outdoor Transmission in 95-110 GHz

Author(s):  
Salim Hanna ◽  
Zhihong Hunter Hong ◽  
Donald McLachlan ◽  
Jafar Shaker ◽  
Andre Brandao ◽  
...  
Author(s):  
D. Cherns

The use of high resolution electron microscopy (HREM) to determine the atomic structure of grain boundaries and interfaces is a topic of great current interest. Grain boundary structure has been considered for many years as central to an understanding of the mechanical and transport properties of materials. Some more recent attention has focussed on the atomic structures of metalsemiconductor interfaces which are believed to control electrical properties of contacts. The atomic structures of interfaces in semiconductor or metal multilayers is an area of growing interest for understanding the unusual electrical or mechanical properties which these new materials possess. However, although the point-to-point resolutions of currently available HREMs, ∼2-3Å, appear sufficient to solve many of these problems, few atomic models of grain boundaries and interfaces have been derived. Moreover, with a new generation of 300-400kV instruments promising resolutions in the 1.6-2.0 Å range, and resolutions better than 1.5Å expected from specialist instruments, it is an appropriate time to consider the usefulness of HREM for interface studies.


Author(s):  
D. A. Carpenter ◽  
M. A. Taylor

The development of intense sources of x rays has led to renewed interest in the use of microbeams of x rays in x-ray fluorescence analysis. Sparks pointed out that the use of x rays as a probe offered the advantages of high sensitivity, low detection limits, low beam damage, and large penetration depths with minimal specimen preparation or perturbation. In addition, the option of air operation provided special advantages for examination of hydrated systems or for nondestructive microanalysis of large specimens.The disadvantages of synchrotron sources prompted the development of laboratory-based instrumentation with various schemes to maximize the beam flux while maintaining small point-to-point resolution. Nichols and Ryon developed a microprobe using a rotating anode source and a modified microdiffractometer. Cross and Wherry showed that by close-coupling the x-ray source, specimen, and detector, good intensities could be obtained for beam sizes between 30 and 100μm. More importantly, both groups combined specimen scanning with modern imaging techniques for rapid element mapping.


Author(s):  
J.L. Batstone ◽  
J.M. Gibson ◽  
Alice.E. White ◽  
K.T. Short

High resolution electron microscopy (HREM) is a powerful tool for the determination of interface atomic structure. With the previous generation of HREM's of point-to-point resolution (rpp) >2.5Å, imaging of semiconductors in only <110> directions was possible. Useful imaging of other important zone axes became available with the advent of high voltage, high resolution microscopes with rpp <1.8Å, leading to a study of the NiSi2 interface. More recently, it was shown that images in <100>, <111> and <112> directions are easily obtainable from Si in the new medium voltage electron microscopes. We report here the examination of the important Si/Si02 interface with the use of a JEOL 4000EX HREM with rpp <1.8Å, in a <100> orientation. This represents a true structural image of this interface.


Author(s):  
O.L. Krivanek ◽  
G.J. Wood

Electron microscopy at 0.2nm point-to-point resolution, 10-10 torr specimei region vacuum and facilities for in-situ specimen cleaning presents intere; ing possibilities for surface structure determination. Three methods for examining the surfaces are available: reflection (REM), transmission (TEM) and profile imaging. Profile imaging is particularly useful because it giv good resolution perpendicular as well as parallel to the surface, and can therefore be used to determine the relationship between the surface and the bulk structure.


Author(s):  
Y. Cheng ◽  
J. Liu ◽  
M.B. Stearns ◽  
D.G. Steams

The Rh/Si multilayer (ML) thin films are promising optical elements for soft x-rays since they have a calculated normal incidence reflectivity of ∼60% at a x-ray wavelength of ∼13 nm. However, a reflectivity of only 28% has been attained to date for ML fabricated by dc magnetron sputtering. In order to determine the cause of this degraded reflectivity the microstructure of this ML was examined on cross-sectional specimens with two high-resolution electron microscopy (HREM and HAADF) techniques.Cross-sectional specimens were made from an as-prepared ML sample and from the same ML annealed at 298 °C for 1 and 100 hours. The specimens were imaged using a JEM-4000EX TEM operating at 400 kV with a point-to-point resolution of better than 0.17 nm. The specimens were viewed along Si [110] projection of the substrate, with the (001) Si surface plane parallel to the beam direction.


Author(s):  
Tapan Roy

Ceramic fibers are being used to improve the mechanical properties of metal matrix and ceramic matrix composites. This paper reports a study of the structural and other microstructural characteristics of silicon nitride whiskers using both conventional TEM and high resolution electron microscopy.The whiskers were grown by T. E. Scott of Michigan Technological University, by passing nitrogen over molten silicon in the presence of a catalyst. The whiskers were ultrasonically dispersed in chloroform and picked up on holey carbon grids. The diameter of some whiskers (<70nm) was small enough to allow direct observation without thinning. Conventional TEM was performed on a Philips EM400T while high resolution imaging was done on a JEOL 200CX microscope with a point to point resolution of 0.23nm.


Author(s):  
Vinayak P. Dravid ◽  
H. Zhang ◽  
L.D. Marks ◽  
J.P. Zhang

A 200 kV cold field emission gun atomic resolution analytical electron microscope (ARAEM, Hitachi HF-2000) has been recently installed at Northwestern. The ARAEM offers an unprecedented combination of atomic structure imaging of better than 0.20 nm nominal point-to-point resolution and about 0.10 nm line resolution, alongwith nanoscale analytical capabilities and electron holography in one single instrument. The ARAEM has been fully functional/operational and this paper presents some illustrative examples of application of ARAEM techniques to oxide superconductors. Additional results will be presented at the meeting.


Author(s):  
Z. L. Wang ◽  
R. Kontra ◽  
A. Goyal ◽  
D. M. Kroeger ◽  
L.F. Allard

Previous studies of Y2BaCuO5/YBa2Cu3O7-δ(Y211/Y123) interfaces in melt-processed and quench-melt-growth processed YBa2Cu3O7-δ using high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS) have revealed a high local density of stacking faults in Y123, near the Y211/Y123 interfaces. Calculations made using simple energy considerations suggested that these stacking faults may act as effective flux-pinners and may explain the observations of increased Jc with increasing volume fraction of Y211. The present paper is intended to determine the atomic structures of the observed defects. HRTEM imaging was performed using a Philips CM30 (300 kV) TEM with a point-to-point image resolution of 2.3 Å. Nano-probe EDS analysis was performed using a Philips EM400 TEM/STEM (100 kV) equipped with a field emission gun (FEG), which generated an electron probe of less than 20 Å in diameter.Stacking faults produced by excess single Cu-O layers: Figure 1 shows a HRTEM image of a Y123 film viewed along [100] (or [010]).


Author(s):  
Jun Jiao

HREM studies of the carbonaceous material deposited on the cathode of a Huffman-Krätschmer arc reactor have shown a rich variety of multiple-walled nano-clusters of different shapes and forms. The preparation of the samples, as well as the variety of cluster shapes, including triangular, rhombohedral and pentagonal projections, are described elsewhere.The close registry imposed on the nanotubes, focuses attention on the cluster growth mechanism. The strict parallelism in the graphitic separation of the tube walls is maintained through changes of form and size, often leading to 180° turns, and accommodating neighboring clusters and defects. Iijima et. al. have proposed a growth scheme in terms of pentagonal and heptagonal defects and their combinations in a hexagonal graphitic matrix, the first bending the surface inward, and the second outward. We report here HREM observations that support Iijima’s suggestions, and add some new features that refine the interpretation of the growth mechanism. The structural elements of our observations are briefly summarized in the following four micrographs, taken in a Hitachi H-8100 TEM operating at an accelerating voltage of 200 kV and with a point-to-point resolution of 0.20 nm.


2020 ◽  
Vol 51 (2) ◽  
pp. 479-493
Author(s):  
Jenny A. Roberts ◽  
Evelyn P. Altenberg ◽  
Madison Hunter

Purpose The results of automatic machine scoring of the Index of Productive Syntax from the Computerized Language ANalysis (CLAN) tools of the Child Language Data Exchange System of TalkBank (MacWhinney, 2000) were compared to manual scoring to determine the accuracy of the machine-scored method. Method Twenty transcripts of 10 children from archival data of the Weismer Corpus from the Child Language Data Exchange System at 30 and 42 months were examined. Measures of absolute point difference and point-to-point accuracy were compared, as well as points erroneously given and missed. Two new measures for evaluating automatic scoring of the Index of Productive Syntax were introduced: Machine Item Accuracy (MIA) and Cascade Failure Rate— these measures further analyze points erroneously given and missed. Differences in total scores, subscale scores, and individual structures were also reported. Results Mean absolute point difference between machine and hand scoring was 3.65, point-to-point agreement was 72.6%, and MIA was 74.9%. There were large differences in subscales, with Noun Phrase and Verb Phrase subscales generally providing greater accuracy and agreement than Question/Negation and Sentence Structures subscales. There were significantly more erroneous than missed items in machine scoring, attributed to problems of mistagging of elements, imprecise search patterns, and other errors. Cascade failure resulted in an average of 4.65 points lost per transcript. Conclusions The CLAN program showed relatively inaccurate outcomes in comparison to manual scoring on both traditional and new measures of accuracy. Recommendations for improvement of the program include accounting for second exemplar violations and applying cascaded credit, among other suggestions. It was proposed that research on machine-scored syntax routinely report accuracy measures detailing erroneous and missed scores, including MIA, so that researchers and clinicians are aware of the limitations of a machine-scoring program. Supplemental Material https://doi.org/10.23641/asha.11984364


Sign in / Sign up

Export Citation Format

Share Document