Miniaturized Full-Wavelength Slot Antenna With Bent Ground Plane And Loaded Microstrip Resonators

Author(s):  
Yu Lan ◽  
Yun Fei Cao
2018 ◽  
Vol 54 (15) ◽  
pp. 918-920 ◽  
Author(s):  
Rui Xu ◽  
Jianying Li ◽  
Jie Liu ◽  
Shi Gang Zhou ◽  
Kun Wei
Keyword(s):  

2016 ◽  
Vol 68 ◽  
pp. 119-127 ◽  
Author(s):  
Hany A. Atallah ◽  
Adel B. Abdel-Rahman ◽  
Kuniaki Yoshitomi ◽  
Ramesh K. Pokharel

Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2936
Author(s):  
Ming-An Chung ◽  
Cheng-Wei Hsiao ◽  
Chih-Wei Yang ◽  
Bing-Ruei Chuang

This paper proposes a small-slot antenna system (50 mm × 9 mm × 2.7 mm) for 4 × 4 multiple-input multiple-output (MIMO) on smart glasses devices. The antenna is set on the plastic temple, and the inverted F antenna radiates through the slot in the ground plane of the sputtered copper layer outside the temple. Two symmetrical antennas and slots on the same temple and series capacitive elements enhance the isolation between the two antenna ports. When both temples are equipped with the proposed antennas, 4 × 4 MIMO transmission can be achieved. The antenna substrate is made of polycarbonate (PC), and its thickness is 2.7 mm εr=2.85, tanδ=0.0092. According to the actual measurement results, this antenna has two working frequency bands when the reflection coefficient is lower than −10dB, its working frequency bandwidth at 4.58–5.72 GHz and 6.38–7.0 GHz. The proposed antenna has a peak gain of 4.3 dBi and antenna efficiency of 85.69% at 5.14 GHz. In addition, it also can obtain a peak gain of 3.3 dBi and antenna efficiency of 82.78% at 6.8 GHz. The measurement results show that this antenna has good performance, allowing future smart eyewear devices to be applied to Wi-Fi 5G (5.18–5.85 GHz) and Wi-Fi 6e (5.925–7.125 GHz).


2021 ◽  
Vol 35 (11) ◽  
pp. 1418-1419
Author(s):  
Yuhao Feng ◽  
Yiming Chen ◽  
Atef Elsherbeni ◽  
Khalid Alharbi

A compact size arrow shaped patch in a rectangular slot antenna is designed for 5G communications in the lower 3 to 6 GHz band. The antenna element is fed through a coplanar waveguide with partial ground plane for better impedance matching with 50 Ohms across the entire band. The maximum gain of a single element is 3.8 dB at 3.7 GHz, while for linear arrays of 5 and 15 elements with uniform excitation the maximum gains are 10.9 dB and 16 dB, respectively. The 5 and 15 elements arrays provide scanning range with no significant degradation of the main beam up to 30˚ and 45˚, respectively. The properties of this antenna element makes it suitable for 5G wireless mobile devices and miniaturized base stations antenna arrays.


2019 ◽  
Vol 11 (10) ◽  
pp. 1054-1060
Author(s):  
Kapil Saraswat ◽  
A. R. Harish

AbstractA polarization and band reconfigurable cross-slot antenna for multiband applications is presented in this paper. The antenna consists of four p–i–n diodes embedded in the cross-shaped slot in a ground plane and excited by a microstrip feed line. The p–i–n diodes are placed in such a way that they produce multiple bands, with linearly and circularly polarized (CP) radiation. By switching the states of the p–i–n diodes, the sense of rotation of the electric field in CP radiation can be reconfigured. The proposed structure can be configured to produce two bands that radiate linearly polarized waves or three bands, where, two are linearly polarized and one is CP. The proposed design concepts are validated bythe CST studio suite as well as measurementsare carried out on fabricated prototypes.


2020 ◽  
Vol 10 (21) ◽  
pp. 7686
Author(s):  
Sungpeel Kim ◽  
Jaehoon Choi

A quasi-Yagi slotted array antenna with fan-beam characteristics is proposed for 28 GHz 5G mobile terminals. The antenna is composed of a 1 × 8 slot antenna array with directors to enhance the half-power beamwidth (HPBW). The proposed antenna has a fan-beam radiation pattern with a simulated HPBW of 256.72° and a peak gain of 11.16 dBi. In addition, the proposed antenna covers ±48° using a beam steering mechanism. Mutual coupling reduction is achieved by inserting slits between the adjacent slot radiators on the ground plane. The simulated −10 dB reflection coefficient bandwidth of the proposed antenna is 1.79 GHz (27.03–28.82 GHz), and the mutual coupling between each of the slot radiators is lower than −25.02 dB over the 28 GHz target band (27.5–28.35 GHz). To investigate the effect of a human body in a practical environment, the power density was considered to estimate the electromagnetic exposure with a simplified skin model. The measured results were in good agreement with the simulated ones and demonstrated that the proposed antenna could be used for 5G mobile terminals.


2015 ◽  
Vol 77 (10) ◽  
Author(s):  
Igbafe Orikumhi ◽  
Mohamad Rijal Hamid ◽  
Ali Nyangwarimam Obadiah

A square slot antenna fed by a coplanar waveguide (CPW) is presented in this paper. The design consist of two pairs of “F” shaped planar strips placed within a square slotted ground. The strips are used to excite multiple resonant frequencies, the strips are connected to the ground plane by means of ideal switches. The proposed antenna has achieved multiple resonant frequencies of 2.4/5.2/5.8 GHz for WLAN and 3.5/5.5 for WiMAX applications. The measured results shows a good agreement with the simulated results in terms of return loss, radiation pattern and gain. The proposed antenna is designed for the frequency range of 2 GHz to 7 GHz which makes it suitable for Bluetooth, WLAN and WiMAX applications. 


Sign in / Sign up

Export Citation Format

Share Document