scholarly journals 4 × 4 MIMO Antenna System for Smart Eyewear in Wi-Fi 5G and Wi-Fi 6e Wireless Communication Applications

Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2936
Author(s):  
Ming-An Chung ◽  
Cheng-Wei Hsiao ◽  
Chih-Wei Yang ◽  
Bing-Ruei Chuang

This paper proposes a small-slot antenna system (50 mm × 9 mm × 2.7 mm) for 4 × 4 multiple-input multiple-output (MIMO) on smart glasses devices. The antenna is set on the plastic temple, and the inverted F antenna radiates through the slot in the ground plane of the sputtered copper layer outside the temple. Two symmetrical antennas and slots on the same temple and series capacitive elements enhance the isolation between the two antenna ports. When both temples are equipped with the proposed antennas, 4 × 4 MIMO transmission can be achieved. The antenna substrate is made of polycarbonate (PC), and its thickness is 2.7 mm εr=2.85, tanδ=0.0092. According to the actual measurement results, this antenna has two working frequency bands when the reflection coefficient is lower than −10dB, its working frequency bandwidth at 4.58–5.72 GHz and 6.38–7.0 GHz. The proposed antenna has a peak gain of 4.3 dBi and antenna efficiency of 85.69% at 5.14 GHz. In addition, it also can obtain a peak gain of 3.3 dBi and antenna efficiency of 82.78% at 6.8 GHz. The measurement results show that this antenna has good performance, allowing future smart eyewear devices to be applied to Wi-Fi 5G (5.18–5.85 GHz) and Wi-Fi 6e (5.925–7.125 GHz).

2019 ◽  
Vol 8 (1) ◽  
pp. 75-81
Author(s):  
N. Al Shalaby ◽  
S. G. El-Sherbiny

In this paper, A multiple input Multiple Output (MIMO) antenna using two Square Dielectric Resonators (SDRs) is introduced. The mutual coupling between the two SDRAs is reduced using two different methods; the first method is based on splitting a spiral slot in the ground plane, then filling the slot with dielectric material, "E.=2.2". The second method is based on inserting a copper parasitic element, having the same shape of the splitted Spiral, between the two SDRAs.  The effect of replacing the copper parasitic element with Carbon nanotubes (CNTs) parasitic element "SOC12 doped long-MWCNT BP" is also studied. The antenna system is designed to operate at 6 GHz. The analysis and simulations are carried out using finite element method (FEM). The defected ground plane method gives a maximum isolation of l8dB at element spacing of 30mm (0.6λo), whereas the parasitic element method gives a maximum isolation of 42.5dB at the same element spacing.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Reza Karimian ◽  
Hamed Tadayon

A new microstrip slot antenna with parasitic elements has been presented in this paper. The proposed antenna is composed of a microstrip feed line, a ground plane on which some simple slots are etched, and parasitic elements. Simulation results show that the antenna structure allows for the independent adjustment of each frequency. A two-element array configuration of this antenna for MIMO application is investigated as well. For comparison between simulation and measurement result both single and array configurations have been fabricated. The measurement result exhibits good radiation performance in terms of return loss, low mutual coupling, and compactness.


2014 ◽  
Vol 8 (1) ◽  
pp. 117-124 ◽  
Author(s):  
Mohammed Younus Talha ◽  
Kamili Jagadeesh Babu ◽  
Rabah W. Aldhaheri

A novel compact multiple-input–multiple-output (MIMO) antenna system operating from 5 to 7.3 GHz is proposed for wireless applications. It comprises of two similar antennas with microstrip feeding and radiating patches developed on a reduced ground plane. The developed antenna system resonates at a dual-band of 5.4 and 6.8 GHz frequencies, giving an impedance bandwidth of 38% (based on S11 < −10 dB). The unique structure of the proposed MIMO system gives a reduced mutual coupling of −27 dB at 5.4 GHz resonant frequency and −19 dB at 6.8 GHz resonant frequency and in the entire operating band the coupling is maintained well below −16 dB. The envelope correlation coefficient of the proposed MIMO system is calculated and is found to be less than 0.05 in the operating band. The measured and simulation results are found in good agreement.


Author(s):  
Nur Zafirah Bt Muhammad Zubir Et.al

A wideband multiple-input-multiple-output (MIMO) antenna system with common elements suitable for SCADA wireless communication backhaul application which is operating frequency of 0.85-2.6GHz that can cover global system for mobile communication (GSM) 900MHz and 1.8GHz, The Universal Mobile Telecommunication System (UMTS) 2GHz, Wi-Fi (2.4GHz) and Long Term Evolution (LTE) 2.6GHz is proposed. The proposed MIMO antenna system consists of four microstrip feedline with common radiating element and a frame shaped ground plane. A single port antenna also was designed and presented in this paper to show the process to design wideband MIMO antenna structure. The radiator of the MIMO antenna system is designed as the shape of modified rectangle with straight line at each corner to enhance the bandwidth frequency. To improve the isolation between ports, the ground plane is modified by inserting four L-slots in each corner to reduce mutual coupling. For an antenna efficiency of more than 60%, the simulated reflection coefficients are below -10dB for all ports at expected frequency. Simulated isolation is achieved greater than -10dB by using a modified ground plane. Also, a low envelope correlation coefficient (ECC) less than 0.1 and polarization diversity gain of about 10dB with the orthogonal mode of linear polarization and omnidirectional pattern during the analysis of the radiation characteristic are achieved. Therefore, the proposed design can be used for SCADA wireless communication backhaul application.


Author(s):  
D. Rajesh Kumar ◽  
G. Venkat Babu ◽  
K.G. Sujanth Narayan ◽  
N. Raju

Abstract A dual-band 10-port multiple input multiple output (MIMO) antenna array for 5G smartphone is proposed. Each antenna in the MIMO system can work from 3.4 to 3.6 GHz and 5 to 6 GHz with 10 dB (2:1 VSWR) impedance bandwidth. Nevertheless, for a 3:1 VSWR, the antenna operates from 3.3 to 3.8 GHz and 4.67 to 6.24 GHz. The MIMO system is formed by making 10 seven-shaped coupled fed slot antenna elements excited at two different resonant modes and integrated into the system circuit board. By implementing the spatial and polarization diversity techniques, high isolation better than 28 dB between any pair of antenna elements is achieved. The proposed 10-port MIMO antenna array is fabricated and measured. Significant radiation efficiency is obtained, ranging from 65 to 82% for both bands. The antenna gain in the required operating band is substantial, around 3–3.8 dBi. Further, the MIMO parameters such as envelope correlation co-efficient, channel capacity, and total active reflection co-efficient are calculated. The antenna's robustness is estimated by analyzing the user hand effects and specific absorption rate (SAR). The measured results are well agreed with the simulated results.


2017 ◽  
Vol 6 (3) ◽  
pp. 78 ◽  
Author(s):  
C. J. Malathi ◽  
D. Thiripurasundari

A 2´1 (two-element) multiple-input multiple-output (MIMO) patch antenna system is designed and fabricated for (2.43 – 2.57) GHz LTE band 7 operation. It uses comple-mentary split -ring resonator (CSRR) loading on its ground plane for antenna miniaturization. This reduces the single-element antenna size by 76%. The total board size of the proposed MIMO antenna system, including the GND plane is 50´50´0.8mm3, while the single-patch antenna element has a size of 18.5 ´16mm2. The antenna is fabricated and tested. Measured results are in good agreement with simulations. A minimum measured isolation of 10 dB is obtained given the close interelement spacing of 0.17λ.


2021 ◽  
Author(s):  
satish kumar ◽  
Gunasekaran Thangavel ◽  
Said Amer Salim Al Ismaili Ismaili ◽  
Balambigai Subramanian

Abstract For the operation of 2.45GHz ISM band, a 2x2 Multiple Input Multiple Output (MIMO) antenna system is designed and fabricated. Complementary Split Ring Resonator (CSRR) is used in the MIMO patch and loaded on its ground plane to miniaturize the single antenna element. The single patch antenna element of 14x18 mm2 is fixed in a board of the Designed MIMO antennae system measuring 100x50x0.8 mm3. The antenna is tested by measuring radiation pattern, gain, VSWR, mutual coupling and return loss. The results of the Designed antenna systems are in good agreement with the simulations. In comparison to a conventional microstrip antenna, the Designed antenna achieves a 75% reduction in the resonant frequency.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3926
Author(s):  
Syeda Iffat Naqvi ◽  
Niamat Hussain ◽  
Amjad Iqbal ◽  
MuhibUr Rahman ◽  
Masoud Forsat ◽  
...  

This work demonstrates an integrated multiple-input multiple-output (MIMO) antenna solution for Long Term Evolution (LTE) and Millimeter-Wave (mm-wave) 5G wireless communication services. The proposed structure is comprised of a two-element LTE MIMO antenna, and a four-element 5G MIMO configuration with rectangular and circular defects in the ground plane. For experimental validation, the proposed structure is fabricated on a Rogers RO4350B substrate with 0.76 mm thickness. The overall substrate dimensions are 75 mm × 110 mm. The proposed structure is capable of operating at 5.29–6.12 GHz (LTE 46 and 47 bands) and 26–29.5 GHz (5G mm-wave) frequency bands. Additionally, the measured peak gain of 5.13 and 9.53 dB is attained respectively for the microwave and mm-wave antennas. Furthermore, the analysis of the MIMO performance metrics demonstrates good characteristics, and excellent field correlation performance across the operating bands. Furthermore, the analysis of the Specific Absorption Rate (SAR) and Power Density (PD) at the lower frequency band (5.9 GHz) and PD only at mm-Wave frequency band (28 GHz) verifies that the proposed antenna system satisfies the international human safety standards. Therefore, the proposed integrated MIMO antenna configuration ascertains to be a potential contender for the forthcoming communication applications.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yan Shi ◽  
Lu Zhang ◽  
Chang-Hong Liang

A multiband multiple-input multiple-output (MIMO) antenna system consisting of two antenna elements has been proposed for 4G USB dongle application. The designed MIMO antenna system with a compact volume of 25 mm × 30 mm × 3.5 mm operates in two zeroth-order resonance (ZOR) modes to cover the LTE band 13 (746–787 MHz), GSM850/900 (824–960 MHz), and LTE band 7 (2500–2690 MHz) simultaneously. A pair of L-shaped parasitic strips and an etching slot on the ground are employed to achieve good isolation between two elements. Measurement results show that proposed MIMO antenna system has total efficiency over 40% across the operation band and isolation less than −8 dB at the lower band and −16 dB at the upper band, respectively.


2021 ◽  
Author(s):  
Darwin R ◽  
Sampath P

Abstract A compact massive MIMO antenna system with 1x4 (sector) subarray setup working at sub-6 GHz range for 5G base stations has been planned and broke down in different configurations(rectangular, triangular and hexagonal). The limit of a system can be expanded by more than 10 times whereas the energy efficiency can be expanded 100 times utilizing a Massive MIMO system. A limit of 5 sectors has been utilized with every sector containing 1x4 subarray components. Every sector comprises of three layers, in which 1x4 patches is situated on its top layer though it's taking care of organization and ground plane has been set in the base layer and the centre layer individually. The whole system can work in two modes, singular port activity andmassive MIMO exhibit activity with shaft guiding abilities. The deliberate data transmission of the framework is 140 MHz that covers the frequencies from 3.36 GHz to 3.50 GHz in sub-6 GHz band. The general component of a unit subarray regarding length, width and tallness was 280.5 x 56.1 x 2 mm3. The gain of an individual port is discovered to be 12.95 dBi and the general addition of a single panel with 5 sectors arranged in rectangular structure is 19.73 dBi. Mutual couplingamong all the ports has been kept not exactly - 16 dB. The working frequency of the radio antenna array system is picked in the scope of 3.3 GHz to 3.8 GHz as this band has been assigned and focused across the globe to empower 5G in Sub-6 GHz band.


Sign in / Sign up

Export Citation Format

Share Document