Energy harvesting techniques: Energy sources, power management and conversion

Author(s):  
Philex Ming-Yan Fan ◽  
Oi-Ying Wong ◽  
Ming-Jie Chung ◽  
Tze-Yun Su ◽  
Xin Zhang ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2874
Author(s):  
Philip-Dylan Gleonec ◽  
Jeremy Ardouin ◽  
Matthieu Gautier ◽  
Olivier Berder

Many connected devices are expected to be deployed during the next few years. Energy harvesting appears to be a good solution to power these devices but is not a reliable power source due to the time-varying nature of most energy sources. It is possible to harvest energy from multiple energy sources to tackle this problem, thus increasing the amount and the consistency of harvested energy. Additionally, a power management system can be implemented to compute how much energy can be consumed and to allocate this energy to multiple tasks, thus adapting the device quality of service to its energy capabilities. The goal is to maximize the amount of measured and transmitted data while avoiding power failures as much as possible. For this purpose, an industrial sensor node platform was extended with a multi-source energy-harvesting circuit and programmed with a novel energy-allocation system for multi-task devices. In this paper, a multi-source energy-harvesting LoRaWAN node is proposed and optimal energy allocation is proposed when the node runs different sensing tasks. The presented hardware platform was built with off-the-shelf components, and the proposed power management system was implemented on this platform. An experimental validation on a real LoRaWAN network shows that a gain of 51% transmitted messages and 62% executed sensing tasks can be achieved with the multi-source energy-harvesting and power-management system, compared to a single-source system.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3433 ◽  
Author(s):  
Giacomo Peruzzi ◽  
Alessandro Pozzebon

The emergence of Internet of Things (IoT) architectures and applications has been the driver for a rapid growth in wireless technologies for the Machine-to-Machine domain. In this context, a crucial role is being played by the so-called Low Power Wide Area Networks (LPWANs), a bunch of transmission technologies developed to satisfy three main system requirements: low cost, wide transmission range, and low power consumption. This last requirement is especially crucial as IoT infrastructures should operate for long periods on limited quantities of energy: to cope with this limitation, energy harvesting is being applied every day more frequently, and several different techniques are being tested for LPWAN systems. The aim of this survey paper is to provide a detailed overview of the the existing LPWAN systems relying on energy harvesting for their powering. In this context, the different LPWAN technologies and protocols will be discussed and, for each technology, the applied energy harvesting techniques will be described as well as the architecture of the power management units when present.


2021 ◽  
Author(s):  
Joana S Teixeira ◽  
Rui S Costa ◽  
Ana Pires ◽  
Andre M Pereira ◽  
Clara Pereira

The worldwide energy scarcity arising from the massive consumption of nonrenewable energy sources raised a global awareness on the need for cleaner and affordable energy solutions to mitigate climate change...


2018 ◽  
Vol 30 (2) ◽  
pp. 213-227 ◽  
Author(s):  
Wen Cai ◽  
Ryan L Harne

In recent years, great advances in understanding the opportunities for nonlinear vibration energy harvesting systems have been achieved giving attention to either the structural or electrical subsystems. Yet, a notable disconnect appears in the knowledge on optimal means to integrate nonlinear energy harvesting structures with effective nonlinear rectifying and power management circuits for practical applications. Motivated to fill this knowledge gap, this research employs impedance principles to investigate power optimization strategies for a nonlinear vibration energy harvester interfaced with a bridge rectifier and a buck-boost converter. The frequency and amplitude dependence of the internal impedance of the harvester structure challenges the conventional impedance matching concepts. Instead, a system-level optimization strategy is established and validated through simulations and experiments. Through careful studies, the means to optimize the electrical power with partial information of the electrical load is revealed and verified in comparison to the full analysis. These results suggest that future study and implementation of optimal nonlinear energy harvesting systems may find effective guidance through power flow concepts built on linear theories despite the presence of nonlinearities in structures and circuits.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5874 ◽  
Author(s):  
Marcelo Miranda Camboim ◽  
Juan Moises Maurício Villanueva ◽  
Cleonilson Protasio de Souza

In the last decades, a lot of effort has been made in order to improve the use of environmentally friendly and renewable energy sources. In a context of small energy usage, energy harvesting takes place and thermal energy sources are one of its main energy sources because there are several unused heat sources available in the environment that may be used as renewable energy sources. To rapidly evaluate the energy potential of such thermal sources is a hard task, therefore, a way to perform this is welcome. In this work, a thermal pattern emulation system to evaluate potential thermal source in a easy way is proposed. The main characteristics of the proposed system is that it is online and remote, that is, while the thermal-source-under-test is being measured, the system is emulating it and evaluating the generated energy remotely. The main contribution of this work was to replace the conventional Proportional Integral Derivative (PID) controller to a Fuzzy-Proportional Integral (PI) controller. In order to compare both controllers, three tests were carried out, namely: (a) step response, (b) perturbation test, (c) thermal emulation of the thermal pattern obtained from a potential thermal source: tree trucks. Experimental results show that the Fuzzy-PI controller was faster than the PID, achieving a setting time 41.26% faster, and also was more efficient with a maximum error 53% smaller than the PID.


Sign in / Sign up

Export Citation Format

Share Document