JIEP project for low-temperature lead-free solders and its report on questionnaire survey

Author(s):  
T. Suga ◽  
M. Takeuchi
2014 ◽  
Vol 2014 (1) ◽  
pp. 000251-000257
Author(s):  
Steven Grabey ◽  
Samson Shahbazi ◽  
Sarah Groman ◽  
Catherine Munoz

An increased interest in low temperature polymer thick film products has become apparent due to the rise of the printed electronics market. The specifications for these products are becoming more demanding with expectations that the low temperature products should perform at a level that is typically reserved for their high temperature counterparts; including solderability with lead free solders, high reliability and strong adhesion. Traditionally, it has only been possible to use leaded solders for soldering to polymer based thick film conductors. Over the last 15 years environmental concerns and legislation have pushed the industry towards a lead free approach. The shift to lead free solders, while beneficial, provides new challenges during processing. The high temperatures required for a lead-free soldering process yield a naturally harsher environment for polymer thick film pastes. In the past these conditions have proven too harsh for the pastes to survive. The polymer thick film discussed in this document aims to address some of these concerns for a highly reliable and easy to process polymer thick film paste. Due to the poor leaching characteristics of polymer thick films, at elevated temperatures, the predecessors of this paste typically soldered at low temperatures with leaded solders. The goal of this paper is to present a low temperature paste that is compatible with a variety of substrates and readily accepts lead-free solder. This paper will discuss a newly formulated low temperature curing (150°C – 200°C) RoHS and REACH compliant paste that shows excellent solderability with SAC305 solder. The paste was evaluated using a dip soldering method at 235°C–250°C on a variety of substrates. The data presented includes solder acceptance, adhesion data, thermal analysis and SEM analysis.


2015 ◽  
Vol 84 ◽  
pp. 331-339 ◽  
Author(s):  
Jian-Chun Liu ◽  
Gong Zhang ◽  
Zheng-Hong Wang ◽  
Ju-Sheng Ma ◽  
Katsuaki Suganuma

Author(s):  
Paresh Limaye ◽  
Wout Maurissen ◽  
Konstantina Lambrinou ◽  
Frederic Duflos ◽  
Bart Vandevelde ◽  
...  

2019 ◽  
Vol 8 (4) ◽  
pp. 11956-11962

Lead-free solders have been the substructure innovation of electronic interconnections for many decenniums due to the widespread utilization of electronic contrivances. SnAg–Cu (SAC) is presently seen as the popular lead-free solder alloy for bundling interconnects in the electronics industry. In this review, the study on the development of low-temperature Pbfree solders using Sn-Bi solder alloys will be discussed regarding thermal behaviour and wettability. The impact of alloying on these compounds is depicted as far as basic microstructural changes, mechanical properties, and reliability. The review closes with a perspective for cutting edge electronic interconnect materials.


2015 ◽  
Vol 10 (1) ◽  
pp. 2641-2648
Author(s):  
Rizk Mostafa Shalaby ◽  
Mohamed Munther ◽  
Abu-Bakr Al-Bidawi ◽  
Mustafa Kamal

The greatest advantage of Sn-Zn eutectic is its low melting point (198 oC) which is close to the melting point. of Sn-Pb eutectic solder (183 oC), as well as its low price per mass unit compared with Sn-Ag and Sn-Ag-Cu solders. In this paper, the effect of 0.0, 1.0, 2.0, 3.0, 4.0, and 5.0 wt. % Al as ternary additions on melting temperature, microstructure, microhardness and mechanical properties of the Sn-9Zn lead-free solders were investigated. It is shown that the alloying additions of Al at 4 wt. % to the Sn-Zn binary system lead to lower of the melting point to 195.72 ˚C.  From x-ray diffraction analysis, an aluminium phase, designated α-Al is detected for 4 and 5 wt. % Al compositions. The formation of an aluminium phase causes a pronounced increase in the electrical resistivity and microhardness. The ternary Sn-9Zn-2 wt.%Al exhibits micro hardness superior to Sn-9Zn binary alloy. The better Vickers hardness and melting points of the ternary alloy is attributed to solid solution effect, grain size refinement and precipitation of Al and Zn in the Sn matrix.  The Sn-9%Zn-4%Al alloy is a lead-free solder designed for possible drop-in replacement of Pb-Sn solders.  


2013 ◽  
Vol 58 (2) ◽  
pp. 529-533 ◽  
Author(s):  
R. Koleňák ◽  
M. Martinkovič ◽  
M. Koleňáková

The work is devoted to the study of shear strength of soldered joints fabricated by use of high-temperature solders of types Bi-11Ag, Au-20Sn, Sn-5Sb, Zn-4Al, Pb-5Sn, and Pb-10Sn. The shear strength was determined on metallic substrates made of Cu, Ni, and Ag. The strength of joints fabricated by use of flux and that of joints fabricated by use of ultrasonic activation without flux was compared. The obtained results have shown that in case of soldering by use of ultrasound (UT), higher shear strength of soldered joints was achieved with most solders. The highest shear strength by use of UT was achieved with an Au-20Sn joint fabricated on copper, namely up to 195 MPa. The lowest average values were achieved with Pb-based solders (Pb-5Sn and Pb-10Sn). The shear strength values of these solders used on Cu substrate varied from 24 to 27 MPa. DSC analysis was performed to determine the melting interval of lead-free solders.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2549
Author(s):  
Wenchao Yang ◽  
Jun Mao ◽  
Yueyuan Ma ◽  
Shuyuan Yu ◽  
Hongping He ◽  
...  

Electrochemical corrosion behavior of ternary tin-zinc-yttrium (Sn-9Zn-xY) solder alloys were investigated in aerated 3.5 wt.% NaCl solution using potentiodynamic polarization techniques, and the microstructure evolution was obtained by scanning electron microscope (SEM). Eight different compositions of Sn-9Zn-xY (x = 0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.20, and 0.30 wt.%) were compared by melting. The experimental results show that when the content of Y reached 0.06 wt.%, the grain size of Zn-rich phase became the smallest and the effect of grain refinement was the best, but there was no significant effect on the melting point. With the increases of Y content, the spreading ratio first increased and then decreased. When the content of Y was 0.06 wt.%, the Sn-9Zn-0.06Y solder alloy had the best wettability on the Cu substrate, which was increased by approximately 20% compared with Sn-9Zn. Besides, the electrochemical corrosion experimental shows that the Y can improve the corrosion resistance of Sn-9Zn system in 3.5 wt.% NaCl solution, and the corrosion resistance of the alloy is better when the amount of Y added is larger within 0.02–0.30 wt.%. Overall considering all performances, the optimal performance can be obtained when the addition amount of Y is 0.06.


Sign in / Sign up

Export Citation Format

Share Document