Development of the wafer level compressive-flow underfill process and its required materials

Author(s):  
S.H. Shi ◽  
T. Yamashita ◽  
C.P. Wong
Keyword(s):  
2012 ◽  
Vol 132 (8) ◽  
pp. 246-253 ◽  
Author(s):  
Mamoru Mohri ◽  
Masayoshi Esashi ◽  
Shuji Tanaka

2020 ◽  
Vol 140 (7) ◽  
pp. 165-169
Author(s):  
Yukio Suzuki ◽  
Dupuit Victor ◽  
Toshiya Kojima ◽  
Yoshiaki Kanamori ◽  
Shuji Tanaka
Keyword(s):  

2017 ◽  
Vol 137 (2) ◽  
pp. 48-58
Author(s):  
Noriyuki Fujimori ◽  
Takatoshi Igarashi ◽  
Takahiro Shimohata ◽  
Takuro Suyama ◽  
Kazuhiro Yoshida ◽  
...  

2016 ◽  
Vol 136 (6) ◽  
pp. 237-243 ◽  
Author(s):  
Shiro Satoh ◽  
Hideyuki Fukushi ◽  
Masayoshi Esashi ◽  
Shuji Tanaka

Author(s):  
A. Orozco ◽  
N.E. Gagliolo ◽  
C. Rowlett ◽  
E. Wong ◽  
A. Moghe ◽  
...  

Abstract The need to increase transistor packing density beyond Moore's Law and the need for expanding functionality, realestate management and faster connections has pushed the industry to develop complex 3D package technology which includes System-in-Package (SiP), wafer-level packaging, through-silicon-vias (TSV), stacked-die and flex packages. These stacks of microchips, metal layers and transistors have caused major challenges for existing Fault Isolation (FI) techniques and require novel non-destructive, true 3D Failure Localization techniques. We describe in this paper innovations in Magnetic Field Imaging for FI that allow current 3D mapping and extraction of geometrical information about current location for non-destructive fault isolation at every chip level in a 3D stack.


Author(s):  
Phil Schani ◽  
S. Subramanian ◽  
Vince Soorholtz ◽  
Pat Liston ◽  
Jamey Moss ◽  
...  

Abstract Temperature sensitive single bit failures at wafer level testing on 0.4µm Fast Static Random Access Memory (FSRAM) devices are analyzed. Top down deprocessing and planar Transmission Electron Microscopy (TEM) analyses show a unique dislocation in the substrate to be the cause of these failures. The dislocation always occurs at the exact same location within the bitcell layout with respect to the single bit failing data state. The dislocation is believed to be associated with buried contact processing used in this type of bitcell layout.


Author(s):  
H. Sur ◽  
S. Bothra ◽  
Y. Strunk ◽  
J. Hahn

Abstract An investigation into metallization/interconnect failures during the process development phase of an advanced 0.35μm CMOS ASIC process is presented. The corresponding electrical failure signature was electrical shorting on SRAM test arrays and subsequently functional/Iddq failures on product-like test vehicles. Advanced wafer-level failure analysis techniques and equipment were used to isolate and identify the leakage source as shorting of metal lines due to tungsten (W) residue which was originating from unfilled vias. Further cross-section analysis revealed that the failing vias were all exposed to the intermetal dielectric spin-on glass (SOG) material used for filling the narrow spaces between metal lines. The outgassing of the SOG in the exposed regions of the via prior to and during the tungsten plug deposition is believed to be the cause of the unfilled vias. This analysis facilitated further process development in eliminating the failure mechanism and since then no failures of this nature have been observed. The process integration approach used to eliminate the failure is discussed.


Sign in / Sign up

Export Citation Format

Share Document