Ultrafast Error Correction Codes for Double Error Detection/Correction

Author(s):  
Luis-J. Saiz-Adalid ◽  
Pedro Gil ◽  
Juan-Carlos Ruiz ◽  
Joaquin Gracia-Moran ◽  
Daniel Gil-Tomas ◽  
...  
Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2074
Author(s):  
J.-Carlos Baraza-Calvo ◽  
Joaquín Gracia-Morán ◽  
Luis-J. Saiz-Adalid ◽  
Daniel Gil-Tomás ◽  
Pedro-J. Gil-Vicente

Due to transistor shrinking, intermittent faults are a major concern in current digital systems. This work presents an adaptive fault tolerance mechanism based on error correction codes (ECC), able to modify its behavior when the error conditions change without increasing the redundancy. As a case example, we have designed a mechanism that can detect intermittent faults and swap from an initial generic ECC to a specific ECC capable of tolerating one intermittent fault. We have inserted the mechanism in the memory system of a 32-bit RISC processor and validated it by using VHDL simulation-based fault injection. We have used two (39, 32) codes: a single error correction–double error detection (SEC–DED) and a code developed by our research group, called EPB3932, capable of correcting single errors and double and triple adjacent errors that include a bit previously tagged as error-prone. The results of injecting transient, intermittent, and combinations of intermittent and transient faults show that the proposed mechanism works properly. As an example, the percentage of failures and latent errors is 0% when injecting a triple adjacent fault after an intermittent stuck-at fault. We have synthesized the adaptive fault tolerance mechanism proposed in two types of FPGAs: non-reconfigurable and partially reconfigurable. In both cases, the overhead introduced is affordable in terms of hardware, time and power consumption.


2019 ◽  
Vol 8 (2S8) ◽  
pp. 1948-1952

The developments in IC technology and rapid increase of transistor densities and scaling factor, the use of ECC’s acquired prominence. Multiple bit errors in memories due to technology scaling demands advanced error correction codes. SEC-DEC, DEC, burst error detection, Golay code, Reed Solmon codes etc. have much decoding complexity and latency. The above drawbacks can be reduced with OLS codes. OLS codes with majority logic decoding technique, modular construction and simple decoding mechanisms it enables low delay improvements. MBU’S can be addressed using OLS-MLD codes. This paper presents a detail study of developments in multibit ECC’s using OLS-MLD mechanism


Author(s):  
Jagannath Samanta ◽  
Akash Kewat

Recently, there have been continuous rising interests of multi-bit error correction codes (ECCs) for protecting memory cells from soft errors which may also enhance the reliability of memory systems. The single error correction and double error detection (SEC-DED) codes are generally employed in many high-speed memory systems. In this paper, Hsiao-based SEC-DED codes are optimized based on two proposed optimization algorithms employed in parity check matrix and error correction logic. Theoretical area complexity of SEC-DED codecs require maximum 49.29%, 18.64% and 49.21% lesser compared to the Hsiao codes [M. Y. Hsiao, A class of optimal minimum odd-weight-column SEC-DED codes, IBM J. Res. Dev. 14 (1970) 395–401], Reviriego et al. codes [P. Reviriego, S. Pontarelli, J. A. Maestro and M. Ottavi, A method to construct low delay single error correction codes for protecting data bits only, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 32 (2013) 479–483] and Liu et al. codes [S. Liu, P. Reviriego, L. Xiao and J. A. Maestro, A method to recover critical bits under a double error in SEC-DED protected memories, Microelectron. Reliab. 73 (2017) 92–96], respectively. Proposed codec is designed and implemented both in field programmable gate array (FPGA) and ASIC platforms. The synthesized SEC-DED codecs need 31.14% lesser LUTs than the original Hsiao code. Optimized codec is faster than the existing related codec without affecting its power consumption. These compact and faster SEC-DED codecs are employed in cache memory to enhance the reliability.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 879
Author(s):  
Ruiquan He ◽  
Haihua Hu ◽  
Chunru Xiong ◽  
Guojun Han

The multilevel per cell technology and continued scaling down process technology significantly improves the storage density of NAND flash memory but also brings about a challenge in that data reliability degrades due to the serious noise. To ensure the data reliability, many noise mitigation technologies have been proposed. However, they only mitigate one of the noises of the NAND flash memory channel. In this paper, we consider all the main noises and present a novel neural network-assisted error correction (ANNAEC) scheme to increase the reliability of multi-level cell (MLC) NAND flash memory. To avoid using retention time as an input parameter of the neural network, we propose a relative log-likelihood ratio (LLR) to estimate the actual LLR. Then, we transform the bit detection into a clustering problem and propose to employ a neural network to learn the error characteristics of the NAND flash memory channel. Therefore, the trained neural network has optimized performances of bit error detection. Simulation results show that our proposed scheme can significantly improve the performance of the bit error detection and increase the endurance of NAND flash memory.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2009
Author(s):  
Fatemeh Najafi ◽  
Masoud Kaveh ◽  
Diego Martín ◽  
Mohammad Reza Mosavi

Traditional authentication techniques, such as cryptographic solutions, are vulnerable to various attacks occurring on session keys and data. Physical unclonable functions (PUFs) such as dynamic random access memory (DRAM)-based PUFs are introduced as promising security blocks to enable cryptography and authentication services. However, PUFs are often sensitive to internal and external noises, which cause reliability issues. The requirement of additional robustness and reliability leads to the involvement of error-reduction methods such as error correction codes (ECCs) and pre-selection schemes that cause considerable extra overheads. In this paper, we propose deep PUF: a deep convolutional neural network (CNN)-based scheme using the latency-based DRAM PUFs without the need for any additional error correction technique. The proposed framework provides a higher number of challenge-response pairs (CRPs) by eliminating the pre-selection and filtering mechanisms. The entire complexity of device identification is moved to the server side that enables the authentication of resource-constrained nodes. The experimental results from a 1Gb DDR3 show that the responses under varying conditions can be classified with at least a 94.9% accuracy rate by using CNN. After applying the proposed authentication steps to the classification results, we show that the probability of identification error can be drastically reduced, which leads to a highly reliable authentication.


Nature ◽  
2021 ◽  
Vol 595 (7867) ◽  
pp. 383-387
Author(s):  
◽  
Zijun Chen ◽  
Kevin J. Satzinger ◽  
Juan Atalaya ◽  
Alexander N. Korotkov ◽  
...  

AbstractRealizing the potential of quantum computing requires sufficiently low logical error rates1. Many applications call for error rates as low as 10−15 (refs. 2–9), but state-of-the-art quantum platforms typically have physical error rates near 10−3 (refs. 10–14). Quantum error correction15–17 promises to bridge this divide by distributing quantum logical information across many physical qubits in such a way that errors can be detected and corrected. Errors on the encoded logical qubit state can be exponentially suppressed as the number of physical qubits grows, provided that the physical error rates are below a certain threshold and stable over the course of a computation. Here we implement one-dimensional repetition codes embedded in a two-dimensional grid of superconducting qubits that demonstrate exponential suppression of bit-flip or phase-flip errors, reducing logical error per round more than 100-fold when increasing the number of qubits from 5 to 21. Crucially, this error suppression is stable over 50 rounds of error correction. We also introduce a method for analysing error correlations with high precision, allowing us to characterize error locality while performing quantum error correction. Finally, we perform error detection with a small logical qubit using the 2D surface code on the same device18,19 and show that the results from both one- and two-dimensional codes agree with numerical simulations that use a simple depolarizing error model. These experimental demonstrations provide a foundation for building a scalable fault-tolerant quantum computer with superconducting qubits.


Sign in / Sign up

Export Citation Format

Share Document