Determining the optimal number of channels and their selection of wavelengths for high speed optical-electronic device for detection of a fire, on the basis of spectral pyrometry

Author(s):  
Marina N. Zyryanova ◽  
Eugene V. Sypin
2019 ◽  
pp. 40-44
Author(s):  
N.S. SOKOLOV ◽  
◽  
S.S. VIKTOROVA ◽  
I.P. FEDOSEEVA ◽  
G.M. SMIRNOVA ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3311
Author(s):  
Riccardo Ballarini ◽  
Marco Ghislieri ◽  
Marco Knaflitz ◽  
Valentina Agostini

In motor control studies, the 90% thresholding of variance accounted for (VAF) is the classical way of selecting the number of muscle synergies expressed during a motor task. However, the adoption of an arbitrary cut-off has evident drawbacks. The aim of this work is to describe and validate an algorithm for choosing the optimal number of muscle synergies (ChoOSyn), which can overcome the limitations of VAF-based methods. The proposed algorithm is built considering the following principles: (1) muscle synergies should be highly consistent during the various motor task epochs (i.e., remaining stable in time), (2) muscle synergies should constitute a base with low intra-level similarity (i.e., to obtain information-rich synergies, avoiding redundancy). The algorithm performances were evaluated against traditional approaches (threshold-VAF at 90% and 95%, elbow-VAF and plateau-VAF), using both a simulated dataset and a real dataset of 20 subjects. The performance evaluation was carried out by analyzing muscle synergies extracted from surface electromyographic (sEMG) signals collected during walking tasks lasting 5 min. On the simulated dataset, ChoOSyn showed comparable performances compared to VAF-based methods, while, in the real dataset, it clearly outperformed the other methods, in terms of the fraction of correct classifications, mean error (ME), and root mean square error (RMSE). The proposed approach may be beneficial to standardize the selection of the number of muscle synergies between different research laboratories, independent of arbitrary thresholds.


Author(s):  
J. F. Thring

With the identification of profitable freight areas and the selection of growth traffics for development has come the need to review in detail the running gear and, in particular, the suspensions of both 4-wheeled and bogie vehicles. This design review has been aimed at ensuring a high-speed capability for all new freight vehicles coupled with safety at all times, low maintenance costs, and maximum availability. After reviewing traditional suspensions, in wide use, with reference to their known strengths and weaknesses, the paper discusses in some detail the philosophy now being applied in B.R. design offices to new freight running gear, for both 4-wheeled and bogie vehicles, to ensure satisfactory achievement of technical objectives. Examples of new developments are provided, together with comments on progress to date.


1999 ◽  
Vol 121 (3) ◽  
pp. 625-630 ◽  
Author(s):  
C. Fred Higgs ◽  
Crystal A. Heshmat ◽  
Hooshang Heshmat

As part of a program to develop solid/powder-lubricated journal bearings, a comparative evaluation has been performed to aid in determining whether MoS2 and WS2 powder are suitable lubricants for high-speed, extreme-environment multi-pad journal bearings. Plots of traction coefficients, friction, frictional power loss, and bearing pad temperature are presented as a means for comparing various powder lubricants. This paper primarily focuses on experiments carried out on a three-pad journal bearing and a disk-on-disk tribometer. Results showed that MoS2 traction curves resemble that of SAE 10 synthetic oil. Unlike liquid lubricants, powder films have a limiting shear strength property. Once the powder reaches this limiting value, the maximum traction coefficient is limited and the powder essentially shears along sliding walls. Experimental traction data shows evidence of this property in various powders. The thermal performance of the bearing was evaluated at speeds up to 30,000 rpm and loads up to 236 N. Although WS2 displayed constant friction coefficient and low temperature with increasing dimensionless load, MoS2 exhibited frictional behavior resembling that of a hydrodynamic lubricating film. In this paper, an attempt has been made to provide a criterion for the selection of solid lubricants for use in those tribosystems that may be operated in a high speed/load regime (i.e., high strain rates) as an alternative yard stick to conventional comparative approaches.


2021 ◽  
Vol 79 (6) ◽  
pp. 631-640
Author(s):  
Takaaki Tsunoda ◽  
Takeo Tsukamoto ◽  
Yoichi Ando ◽  
Yasuhiro Hamamoto ◽  
Yoichi Ikarashi ◽  
...  

Electronic devices such as medical instruments implanted in the human body and electronic control units installed in automobiles have a large impact on human life. The electronic circuits in these devices require highly reliable operation. Radiographic testing has recently been in strong demand as a nondestructive way to help ensure high reliability. Companies that use high-density micrometer-scale circuits or lithium-ion batteries require high speed and high magnification inspection of all parts. The authors have developed a new X-ray source supporting these requirements. The X-ray source has a sealed tube with a transmissive target on a diamond window that offers advantages over X-ray sources having a sealed tube with a reflective target. The X-ray source provides high-power-density X-ray with no anode degradation and a longer shelf life. In this paper, the authors will summarize X-ray source classification relevant to electronic device inspection and will detail X-ray source performance requirements and challenges. The paper will also elaborate on technologies employed in the X-ray source including tube design implementations for high-power-density X-ray, high resolution, and high magnification simultaneously; reduced system downtime for automated X-ray inspection; and reduced dosages utilizing quick X-ray on-and-off emission control for protection of sensitive electronic devices.


2021 ◽  
Vol 141 (6) ◽  
pp. 472-485
Author(s):  
Takayuki Iida ◽  
Masatsugu Takemoto ◽  
Satoshi Ogasawara ◽  
Koji Orikawa ◽  
Ikuya Sato ◽  
...  

2019 ◽  
Vol 59 (7) ◽  
pp. 85-91
Author(s):  
Yulia A. Smyatskaya ◽  
◽  
Natalia A. Politaeva ◽  
Amira Toumi ◽  
◽  
...  

This article discusses the effect of the disintegration of the cell wall of the microalgae Chlorella sorokiniana on the output of the lipid fraction. The biomass of the microalgae Chlorella sorokiniana was grown under laboratory conditions in special photobioreactors at a temperature of 25 °C, with a constant aeration of a mixture of carbon dioxide and air at a rate of 1.5 liters/min, illumination 2200-2800 Lx. Nutrient medium for cultivation contained macro – and micronutrients for high-speed growth of microalgae. Selection of optimal cultivation parameters allows obtaining biomass with desired properties. Disintegration was carried out with the homogenization of biomass and under the influence of microwave radiation. Extraction of lipids was carried out on a semi-automatic extractor according to the Randall method, using organic solvents. The output of the lipid fraction without treatment was 10.18% after the destruction of the cell wall 14.45% with the homogenization of biomass and 13.85% under the influence of microwave radiation. A qualitative analysis of the lipid fraction, carried out under gas chromatography, obtained under various conditions showed that there was no significant difference in composition from the disintegration method. Lipid fractions (more than 50%) in both cases consist mainly of unsaturated fatty acids, of which irreplaceable unsaturated fatty acids constitute more than 18% for both samples. The residual biomass formed after the extraction of the lipid fraction can be used as fertilizer in the plant, for the manufacture of sorption materials for the purification of industrial water and as a biofuel. The purpose of this study was to study the effect of cell wall disintegration on the output of the lipid fraction and qualitative composition.


Sign in / Sign up

Export Citation Format

Share Document