Effects of denoising strategies on R-wave detection in ECG analysis

Author(s):  
Michal Kozlowski ◽  
Sukhpreet Singh ◽  
Georgina Ramage ◽  
Esther Rodriguez-Villegas
Keyword(s):  
The Lancet ◽  
2000 ◽  
Vol 355 (9197) ◽  
pp. 422 ◽  
Author(s):  
M Whittle
Keyword(s):  

PIERS Online ◽  
2010 ◽  
Vol 6 (7) ◽  
pp. 636-639
Author(s):  
Toshiyuki Nakamiya ◽  
Fumiaki Mitsugi ◽  
Shota Suyama ◽  
Tomoaki Ikegami ◽  
Yoshito Sonoda ◽  
...  

2020 ◽  
Vol 13 (12) ◽  
pp. 124002
Author(s):  
Tao Hu ◽  
Wanli Ma ◽  
Jing Wu ◽  
Zhibo Zhang ◽  
Wei Zhou ◽  
...  

Author(s):  
Saumendra Kumar Mohapatra ◽  
Mihir Narayan Mohanty

Background: In recent years cardiac problems found proportional to technology development. Cardiac signal (Electrocardiogram) relates to the electrical activity of the heart of a living being and it is an important tool for diagnosis of heart diseases. Method: Accurate analysis of ECG signal can provide support for detection, classification, and diagnosis. Physicians can detect the disease and start the diagnosis at an early stage. Apart from cardiac disease diagnosis ECG can be used for emotion recognition, heart rate detection, and biometric identification. Objective: The objective of this paper is to provide a short review of earlier techniques used for ECG analysis. It can provide support to the researchers in a new direction. The review is based on preprocessing, feature extraction, classification, and different measuring parameters for accuracy proof. Also, different data sources for getting the cardiac signal is presented and various application area of the ECG analysis is presented. It explains the work from 2008 to 2018. Conclusion: Proper analysis of the cardiac signal is essential for better diagnosis. In automated ECG analysis, it is essential to get an accurate result. Numerous techniques were addressed by the researchers for the analysis of ECG. It is important to know different steps related to ECG analysis. A review is done based on different stages of ECG analysis and its applications in society.


2021 ◽  
Vol 11 (14) ◽  
pp. 6549
Author(s):  
Hui Liu ◽  
Ming Zeng ◽  
Xiang Niu ◽  
Hongyan Huang ◽  
Daren Yu

The microthruster is the crucial device of the drag-free attitude control system, essential for the space-borne gravitational wave detection mission. The cusped field thruster (also called the High Efficiency Multistage Plasma Thruster) becomes one of the candidate thrusters for the mission due to its low complexity and potential long life over a wide range of thrust. However, the prescribed minimum of thrust and thrust noise are considerable obstacles to downscaling works on cusped field thrusters. This article reviews the development of the low power cusped field thruster at the Harbin Institute of Technology since 2012, including the design of prototypes, experimental investigations and simulation studies. Progress has been made on the downscaling of cusped field thrusters, and a new concept of microwave discharge cusped field thruster has been introduced.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  

AbstractIn this perspective, we outline that a space borne gravitational wave detector network combining LISA and Taiji can be used to measure the Hubble constant with an uncertainty less than 0.5% in ten years, compared with the network of the ground based gravitational wave detectors which can measure the Hubble constant within a 2% uncertainty in the next five years by the standard siren method. Taiji is a Chinese space borne gravitational wave detection mission planned for launch in the early 2030 s. The pilot satellite mission Taiji-1 has been launched in August 2019 to verify the feasibility of Taiji. The results of a few technologies tested on Taiji-1 are presented in this paper.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1877
Author(s):  
Nikolai Petrov ◽  
Vladislav Pustovoit

It is highly desirable to have a compact laser interferometer for detecting gravitational waves. Here, a small-sized tabletop laser interferometer with Fabry–Perot resonators consisting of two spatially distributed “mirrors” for detecting gravitational waves is proposed. It is shown that the spectral resolution of 10−23 cm−1 can be achieved at a distance between mirrors of only 1–3 m. The influence of light absorption in crystals on the limiting resolution of such resonators is also studied. A higher sensitivity of the interferometer to shorter-wave laser radiation is shown. A method for detecting gravitational waves is proposed based on the measurement of the correlation function of the radiation intensities of non-zero-order resonant modes from the two arms of the Mach–Zehnder interferometer.


Sign in / Sign up

Export Citation Format

Share Document