Extraction of frequency dependent RLCG parameters of the packaging interconnects on low-loss substrates from frequency domain measurements

Author(s):  
Guang Chen ◽  
Lin Zhu ◽  
K.L. Melde
Author(s):  
Mansour Tabatabaie ◽  
Thomas Ballard

Dynamic soil-structure interaction (SSI) analysis of nuclear power plants is often performed in frequency domain using programs such as SASSI [1]. This enables the analyst to properly a) address the effects of wave radiation in an unbounded soil media, b) incorporate strain-compatible soil shear modulus and damping properties and c) specify input motion in the free field using the de-convolution method and/or spatially variable ground motions. For structures that exhibit nonlinearities such as potential base sliding and/or uplift, the frequency-domain procedure is not applicable as it is limited to linear systems. For such problems, it is necessary to solve the problem in the time domain using the direct integration method in programs such as ADINA [2]. The authors recently introduced a sub-structuring technique called distributed parameter foundation impedance (DPFI) model that allows the structure to be partitioned from the total SSI system and analyzed in the time domain while the foundation soil is modeled using the frequency-domain procedure [3]. This procedure has been validated for linear systems. In this paper we have expanded the DPFI model to incorporate nonlinearities at the soil/structure interface by introducing nonlinear shear and normal springs arranged in series between the DPFI and structure model. This combination of the linear far-field impedance (DPFI) plus nonlinear near-field soil springs allows the foundation sliding and/or uplift behavior be analyzed in time domain while maintaining the frequency-dependent stiffness and radiation damping nature of the far-field foundation impedance. To check the accuracy of this procedure, a typical NPP foundation mat supported at the surface of a layered soil system and subjected to harmonic forced vibration was first analyzed in the frequency domain using SASSI to calculate the target linear response and derive a linear, far-field DPFI model. The target linear solution was then used to validate two linear time-domain ADINA models: Model 1 consisting of the mat foundation+DPFI derived from the linear SASSI model and Model 2 consisting of the total SSI system (mat foundation plus a soil block). After linear alignment, the nonlinear springs were added to both ADINA models and re-analyzed in time domain. Model 2 provided the target nonlinear solution while Model 1 provided the results using the DPFI+nonlinear springs. By increasing the amplitude of the vibration load, different levels of foundation sliding were simulated. Good agreement between the results of two models in terms of the displacement response of the mat and cyclic force-displacement behavior of the springs validates the accuracy of the procedure presented herein.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1868
Author(s):  
Xiaoye Peng ◽  
Zhiyu Wang ◽  
Jiongjiong Mo ◽  
Chenge Wang ◽  
Jiarui Liu ◽  
...  

Frequency-dependent I/Q imbalance and frequency-independent I/Q imbalance are the major impairments in wideband zero-IF receivers, and they both cannot be ignored. In this paper, a blind calibration model is designed for compensating these I/Q imbalances. In order to accurately estimate the imbalance parameters with low cost, a classification rule is proposed according to the frequency-domain statistical characteristics of the received signal. The calibration points in the frequency-domain are divided into two groups. Then, the amplitude imbalance and the frequency-dependent phase imbalance are derived from the group of signal points and, separately, the frequency-independent phase imbalance is calculated from the group of noise points. In the derivation of the frequency-dependent phase imbalance, a general fitting model suitable for all signal points is proposed, which does not require special calculations for either DC point or fs/2 point. Then, a finite impulse response (FIR) real-valued filter is designed to correct the impairments of received signal. The performances of the proposed calibration model are evaluated through both simulations and experiments. The simulation results show the image rejection ratio (IRR) improvement to around 35–45 dBc at high signal-to-noise ratio (SNR). Based on the mismatched data of the ADRV9009 evaluation board, the experimental results exhibit the IRR improvement of both multi-tone and wideband signals to about 30 dBc.


Geophysics ◽  
2009 ◽  
Vol 74 (4) ◽  
pp. S85-S93 ◽  
Author(s):  
Jun Cao ◽  
Ru-Shan Wu

Directional illumination analysis based on one-way wave equations has been studied extensively; however, its inherent limitations, e.g., one-way propagation, wide-angle error, and amplitude inaccuracy, can severely hinder its applications for accurate survey design and true-reflection imaging corrections in complex media. We have analyzed the illumination in the frequency domain using full two-way wave propagators considering the extensive computation and huge storage required for time-domain methods, and the fact that the illumination is frequency dependent. This full-wave analysis can provide frequency-dependent full-angle true-amplitude illumination not only for the downgoing waves but also for the upgoing waves, including turning waves and reflected waves. Two methods were considered to decompose the full wavefield into the local angle domain: a direct full-dimensional decomposition and more efficient split-step decomposition composed of three lower-dimensional decompositions. The results of illumination analysis demonstrated the advantages of this method. The two decomposition methods produced similar results.


Author(s):  
Pol D. Spanos ◽  
Rupak Ghosh ◽  
Lyle D. Finn ◽  
Fikry Botros ◽  
John Halkyard

The response of a combined Spar/ risers/mooring lines system is conventionally determined by conducting nonlinear time domain analysis. The system nonlinearity is introduced by the mooring nonlinear force, the friction between the buoyancy-can and the preloaded compliant guide, and the quadratic model of the fluid related damping. Obviously, during the design process, it is important to understand the sensitivity of the Spar responses to various parameters. To a great extent, these objectives cannot be readily achieved by using time domain analysis since, in this context, elements with frequency dependent representation such as the added masses and supplementary damping must be incorporated in the analysis; this may require the use of elaborate convolution techniques. This attribute of the time domain solution combined with the necessity of running a significant number of simulations makes it desirable to develop alternative methods of analysis. In the present paper, a frequency domain approach based on the method of the statistical linearization is used for conducting readily a parametric study of the combined Spar system. This method allows one to account by an equivalent linear damping and an equivalent linear stiffness for the mooring nonlinearity, friction nonlinearity, and the damping nonlinearity of the system. Further, frequency dependent inertia and radiation damping terms in the equations of motion are accommodated. This formulation leads to a mathematical model for the combined system, which involves five-by-five mass, damping and stiffness matrices. In the solution procedure, the equivalent parameters of the linear system are refined in an iterative manner, and by relying on an optimization criterion. This procedure is used to assess the sensitivity of representative Spar system responses to various design parameters. Further, the effect of various design parameters on the combined system response is examined. The environmental loadings considered are of the JONSWAP format of a 100-yr hurricane in the Gulf of Mexico.


Author(s):  
Fushun Liu ◽  
Lei Jin ◽  
Jiefeng Chen ◽  
Wei Li

Numerical time- or frequency-domain techniques can be used to analyze motion responses of a floating structure in waves. Time-domain simulations of a linear transient or nonlinear system usually involve a convolution terms and are computationally demanding, and frequency-domain models are usually limited to steady-state responses. Recent research efforts have focused on improving model efficiency by approximating and replacing the convolution term in the time domain simulation. Contrary to existed techniques, this paper will utilize and extend a more novel method to the frequency response estimation of floating structures. This approach represents the convolution terms, which are associated with fluid memory effects, with a series of poles and corresponding residues in Laplace domain, based on the estimated frequency-dependent added mass and damping of the structure. The advantage of this approach is that the frequency-dependent motion equations in the time domain can then be transformed into Laplace domain without requiring Laplace-domain expressions of the added mass and damping. Two examples are employed to investigate the approach: The first is an analytical added mass and damping, which satisfies all the properties of convolution terms in time and frequency domains simultaneously. This demonstrates the accuracy of the new form of the retardation functions; secondly, a numerical six degrees of freedom model is employed to study its application to estimate the response of a floating structure. The key conclusions are: (1) the proposed pole-residue form can be used to consider the fluid memory effects; and (2) responses are in good agreement with traditional frequency-domain techniques.


Geophysics ◽  
1999 ◽  
Vol 64 (3) ◽  
pp. 707-718 ◽  
Author(s):  
Richard Friel ◽  
Dani Or

Standard analyses of time‐domain reflectometry (TDR) waveforms in environmental sciences use traveltime along waveguides and reflection amplitude to infer water content and bulk electrical conductivity, respectively. TDR waveforms contain additional information on the frequency‐dependent dielectric permittivity of media, which can be extracted through transformation of TDR waveforms into the frequency domain. The primary objective of this study was to provide a more complete picture of TDR responses in the frequency domain and to improve estimation of dielectric properties. The frequency content of TDR waveforms interacting with various constituents was measured and compared with predictions based on known dielectric properties and waveguide geometries. The study highlights the dominant role of the S11 scatter function, which describes how a TDR signal is modified by media properties and probe configuration. Scatter functions derived from transformed TDR waveforms into the frequency domain were used for estimation of frequency‐dependent dielectric properties of wet soils. The main results were (1) a more complete picture of TDR waveforms in the frequency domain; (2) estimation and use of scatter functions for TDR‐based dielectric permittivity estimation; and (3) highlights of potential usefulness and limitations of a commonly used TDR cable tester (Tektronix 1502B) and waveguide design for estimation of frequency‐dependent dielectric properties of porous media.


2014 ◽  
Vol 580-583 ◽  
pp. 1153-1160
Author(s):  
Fan Yang ◽  
Kai Wei ◽  
Yan Chen Song

Based on Vehicle-Track Coupling Dynamics and the spectrum analysis technique of the Finite Element Method, a frequency-domain method of environment vibration due to subway is put forward and frequency-range distribution of ground acceleration is discussed. Compared with the measured data, the result shows that after considering frequency-dependent stiffness of rail pad, the error is less than 0.3dB in the frequency range of 0-30 Hz, but it is up to 11.8 dB in the frequency range of 50-100 Hz. And the frequency-domain distribution of ground vibration changes too. Thus, the frequency-dependent stiffness of rail pads is not negligible in the prediction of environment vibration generated by subway.


Sign in / Sign up

Export Citation Format

Share Document