Thermal methodology for evaluating the performance of microelectronic devices with non-uniform power dissipation

Author(s):  
Teck Joo Goh
Author(s):  
Nurhak Erbas ◽  
Oktay Baysal

Failure rates of electronic equipment depend on the operating temperature. Although demand for more effective cooling of electronic devices has increased in the last decades because of the microminiaturization in device sizes accompanied by higher power dissipation levels, there is still a challenge for engineers to attain improved reliability of thermal management for intermediate and low-heat-flux systems. In the present study, an innovative alternative method is proposed and a computational parametric study has been conducted. A single microchip is placed in a two-dimensional channel. Different synthetic jet configurations are designed as actuators in order to investigate their effectiveness for thermal management. The effect is that the actuator enhances mixing by imparting momentum to the channel flow thus manipulating the temperature field in a positive manner. The best control is achieved when the actuator is placed midway of the chip length and increasing the throat height. Also, using nozzle-like throat geometry increases the heat transfer rate from the microchip surface. Doubling the number of the actuators, optimally placing them, and phasing their membrane oscillations all improve the cooling.


Author(s):  
R. F. Schneidmiller ◽  
W. F. Thrower ◽  
C. Ang

Solid state materials in the form of thin films have found increasing structural and electronic applications. Among the multitude of thin film deposition techniques, the radio frequency induced plasma sputtering has gained considerable utilization in recent years through advances in equipment design and process improvement, as well as the discovery of the versatility of the process to control film properties. In our laboratory we have used the scanning electron microscope extensively in the direct and indirect characterization of sputtered films for correlation with their physical and electrical properties.Scanning electron microscopy is a powerful tool for the examination of surfaces of solids and for the failure analysis of structural components and microelectronic devices.


Author(s):  
L. J. Chen ◽  
L. S. Hung ◽  
J. W. Mayer

When an energetic ion penetrates through an interface between a thin film (of species A) and a substrate (of species B), ion induced atomic mixing may result in an intermixed region (which contains A and B) near the interface. Most ion beam mixing experiments have been directed toward metal-silicon systems, silicide phases are generally obtained, and they are the same as those formed by thermal treatment.Recent emergence of silicide compound as contact material in silicon microelectronic devices is mainly due to the superiority of the silicide-silicon interface in terms of uniformity and thermal stability. It is of great interest to understand the kinetics of the interfacial reactions to provide insights into the nature of ion beam-solid interactions as well as to explore its practical applications in device technology.About 500 Å thick molybdenum was chemical vapor deposited in hydrogen ambient on (001) n-type silicon wafer with substrate temperature maintained at 650-700°C. Samples were supplied by D. M. Brown of General Electric Research & Development Laboratory, Schenectady, NY.


2010 ◽  
Vol E93-C (12) ◽  
pp. 1670-1678 ◽  
Author(s):  
Ehsan ESFANDIARI ◽  
Norman Bin MARIUN ◽  
Mohammad Hamiruce MARHABAN ◽  
Azmi ZAKARIA

2014 ◽  
Vol 4 (3) ◽  
pp. 9-13
Author(s):  
M. Balaji ◽  
◽  
B. Keerthana ◽  
K. Varun ◽  
◽  
...  

Author(s):  
Christian Burmer ◽  
Siegfried Görlich ◽  
Siegfried Pauthner

Abstract New layout overlay technique has been developed based on standard image correlation techniques to support failure analysis in modern microelectronic devices, which are critical to analyze because they are realized in new technologies using sub-ìm design rules, chemical mechanical polishing techniques (CMP) and autorouted design techniques. As the new technique is realized as an extension of a standard CAD-navigation software and as it makes use of standard image format "TIFF" for data input, which is available at all modern equipments for failure analysis, these technique can be applied to all modern failure analysis methods. Here examples are given for three areas of application: circuit modification using Focused Ion Beam (FIB), support of preparation for backside inspection and fault localization using emission microscopy.


Sign in / Sign up

Export Citation Format

Share Document