Base Station Antenna Placement of Wireless Sensor/Actuator Networks in Manufacturing Cells

Author(s):  
Christoph Cammin ◽  
Dmytro Krush ◽  
Housam Wattar ◽  
Ralf Heynicke ◽  
Gerd Scholl
2018 ◽  
Vol Volume 27 - 2017 - Special... ◽  
Author(s):  
Vianney Kengne Tchendji ◽  
Blaise Paho Nana

International audience Wireless sensor networks (WSN) face many implementation’s problems such as connectivity, security, energy saving, fault tolerance, interference, collision, routing problems, etc. In this paper, we consider a low-density WSN where the distribution of the sensors is poor, and the virtual architecture introduced by Wadaa and al which provides a powerful and fast partitioning of the network into a set of clusters. In order to effectively route the information collected by each sensor node to the base station (sink node, located at the center of the network), we propose a technique based on multiple communication frequencies in order to avoid interferences during the communications. Secondly, we propose an empty clusters detection algorithm, allowing to know the area actually covered by the sensors after the deployment, and therefore, giving the possibility to react accordingly. Finally, we also propose a strategy to allow mobile sensors (actuators) to move in order to: save the WSN’s connectivity, improve the routing of collected data, save the sensors’ energy, improve the coverage of the area of interest, etc. Les réseaux de capteurs sans fil (RCSF) font face à de nombreux problèmes dans leur mise en oeuvre, notamment aux problèmes de connectivité des noeuds, de sécurité, d'économie d'énergie, de tolérance aux pannes, d'interférence, de collision, de routage, etc. Dans ce document, nous considérons un RCSF peu dense, caractérisé par une mauvaise couverture de la zone d'inté-rêt, et l'architecture virtuel introduite par Wadaa et al qui permet de partitionner efficacement ce type de réseau en clusters. Dans l'optique de router optimalement les informations collectés par chaque capteur jusqu'à une station de base (noeud sink, supposé au centre du réseau), nous proposons une technique d'utilisation des fréquences multiples pour limiter les interférences lors des communications. Ensuite, nous proposons un algorithme de détection de clusters vides permettant d'avoir une vue globale de la répartition réelle des capteurs dans la zone d'intérêt, et ainsi donner la possibilité de réagir en conséquence. Nous proposons également une stratégie de déplacement des capteurs mobiles (actuators) afin de: sauvegarder la connectivité du RCSF, optimiser le routage, économiser l'énergie des capteurs, améliorer la couverture de la zone d'intérêt, etc.


Author(s):  
Yugashree Bhadane ◽  
Pooja Kadam

Now days, wireless technology is one of the center of attention for users and researchers. Wireless network is a network having large number of sensor nodes and hence called as “Wireless Sensor Network (WSN)”. WSN monitors and senses the environment of targeted area. The sensor nodes in WSN transmit data to the base station depending on the application. These sensor nodes communicate with each other and routing is selected on the basis of routing protocols which are application specific. Based on network structure, routing protocols in WSN can be divided into two categories: flat routing, hierarchical or cluster based routing, location based routing. Out of these, hierarchical or cluster based routing is becoming an active branch of routing technology in WSN. To allow base station to receive unaltered or original data, routing protocol should be energy-efficient and secure. To fulfill this, Hierarchical or Cluster base routing protocol for WSN is the most energy-efficient among other routing protocols. Hence, in this paper, we present a survey on different hierarchical clustered routing techniques for WSN. We also present the key management schemes to provide security in WSN. Further we study and compare secure hierarchical routing protocols based on various criteria.


Author(s):  
Piyush Rawat ◽  
Siddhartha Chauhan

Background and Objective: The functionalities of wireless sensor networks (WSN) are growing in various areas, so to handle the energy consumption of network in an efficient manner is a challenging task. The sensor nodes in the WSN are equipped with limited battery power, so there is a need to utilize the sensor power in an efficient way. The clustering of nodes in the network is one of the ways to handle the limited energy of nodes to enhance the lifetime of the network for its longer working without failure. Methods: The proposed approach is based on forming a cluster of various sensor nodes and then selecting a sensor as cluster head (CH). The heterogeneous sensor nodes are used in the proposed approach in which sensors are provided with different energy levels. The selection of an efficient node as CH can help in enhancing the network lifetime. The threshold function and random function are used for selecting the cluster head among various sensors for selecting the efficient node as CH. Various performance parameters such as network lifespan, packets transferred to the base station (BS) and energy consumption are used to perform the comparison between the proposed technique and previous approaches. Results and Discussion: To validate the working of the proposed technique the simulation is performed in MATLAB simulator. The proposed approach has enhanced the lifetime of the network as compared to the existing approaches. The proposed algorithm is compared with various existing techniques to measure its performance and effectiveness. The sensor nodes are randomly deployed in a 100m*100m area. Conclusion: The simulation results showed that the proposed technique has enhanced the lifespan of the network by utilizing the node’s energy in an efficient manner and reduced the consumption of energy for better network performance.


Author(s):  
Omkar Singh ◽  
Vinay Rishiwal

Background & Objective: Wireless Sensor Network (WSN) consist of huge number of tiny senor nodes. WSN collects environmental data and sends to the base station through multi-hop wireless communication. QoS is the salient aspect in wireless sensor networks that satisfies end-to-end QoS requirement on different parameters such as energy, network lifetime, packets delivery ratio and delay. Among them Energy consumption is the most important and challenging factor in WSN, since the senor nodes are made by battery reserved that tends towards life time of sensor networks. Methods: In this work an Improve-Energy Aware Multi-hop Multi-path Hierarchy (I-EAMMH) QoS based routing approach has been proposed and evaluated that reduces energy consumption and delivers data packets within time by selecting optimum cost path among discovered routes which extends network life time. Results and Conclusion: Simulation has been done in MATLAB on varying number of rounds 400- 2000 to checked the performance of proposed approach. I-EAMMH is compared with existing routing protocols namely EAMMH and LEACH and performs better in terms of end-to-end-delay, packet delivery ratio, as well as reduces the energy consumption 13%-19% and prolongs network lifetime 9%- 14%.


2020 ◽  
Vol 13 (2) ◽  
pp. 168-172
Author(s):  
Ravi Kumar Poluru ◽  
M. Praveen Kumar Reddy ◽  
Syed Muzamil Basha ◽  
Rizwan Patan ◽  
Suresh Kallam

Background:Recently Wireless Sensor Network (WSN) is a composed of a full number of arbitrarily dispensed energy-constrained sensor nodes. The sensor nodes help in sensing the data and then it will transmit it to sink. The Base station will produce a significant amount of energy while accessing the sensing data and transmitting data. High energy is required to move towards base station when sensing and transmitting data. WSN possesses significant challenges like saving energy and extending network lifetime. In WSN the most research goals in routing protocols such as robustness, energy efficiency, high reliability, network lifetime, fault tolerance, deployment of nodes and latency. Most of the routing protocols are based upon clustering has been proposed using heterogeneity. For optimizing energy consumption in WSN, a vital technique referred to as clustering.Methods:To improve the lifetime of network and stability we have proposed an Enhanced Adaptive Distributed Energy-Efficient Clustering (EADEEC).Results:In simulation results describes the protocol performs better regarding network lifetime and packet delivery capacity compared to EEDEC and DEEC algorithm. Stability period and network lifetime are improved in EADEEC compare to DEEC and EDEEC.Conclusion:The EADEEC is overall Lifetime of a cluster is improved to perform the network operation: Data transfer, Node Lifetime and stability period of the cluster. EADEEC protocol evidently tells that it improved the throughput, extended the lifetime of network, longevity, and stability compared with DEEC and EDEEC.


2016 ◽  
Vol 26 (1) ◽  
pp. 17
Author(s):  
Carlos Deyvinson Reges Bessa

ABSTRACTThis work aims to study which wireless sensor network routing protocol is more suitable for Smart Grids applications, through simulation of AODV protocols, AOMDV, DSDV and HTR in the NS2 simulation environment. Was simulated a network based on a residential area with 47 residences, with one node for each residence and one base station, located about 25m from the other nodes. Many parameters, such as packet loss, throughput, delay, jitter and energy consumption were tested.  The network was increased to 78 and 93 nodes in order to evaluate the behavior of the protocols in larger networks. The tests proved that the HTR is the routing protocol that has the best results in performance and second best in energy consumption. The DSDV had the worst performance according to the tests.Key words.- Smart grid, QoS analysis, Wireless sensor networks, Routing protocols.RESUMENEste trabajo tiene como objetivo estudiar el protocolo de enrutamiento de la red de sensores inalámbricos es más adecuado para aplicaciones de redes inteligentes, a través de la simulación de protocolos AODV, AOMDV, DSDV y HTR en el entorno de simulación NS2. Se simuló una red basada en una zona residencial con 47 residencias, con un nodo para cada residencia y una estación base, situada a unos 25 metros de los otros nodos. Muchos parámetros, tales como la pérdida de paquetes, rendimiento, retardo, jitter y el consumo de energía se probaron. La red se incrementó a 78 y 93 nodos con el fin de evaluar el comportamiento de los protocolos de redes más grandes. Las pruebas demostraron que el HTR es el protocolo de enrutamiento que tiene los mejores resultados en el rendimiento y el segundo mejor en el consumo de energía. El DSDV tuvo el peor desempeño de acuerdo a las pruebas.Palabras clave.- redes inteligentes, análisis de calidad de servicio, redes de sensores inalámbricas, protocolos de enrutamiento.


Author(s):  
Pawan Singh Mehra

AbstractWith huge cheap micro-sensing devices deployed, wireless sensor network (WSN) gathers information from the region and delivers it to the base station (BS) for further decision. The hotspot problem occurs when cluster head (CH) nearer to BS may die prematurely due to uneven energy depletion resulting in partitioning the network. To overcome the issue of hotspot or energy hole, unequal clustering is used where variable size clusters are formed. Motivated from the aforesaid discussion, we propose an enhanced fuzzy unequal clustering and routing protocol (E-FUCA) where vital parameters are considered during CH candidate selection, and intelligent decision using fuzzy logic (FL) is taken by non-CH nodes during the selection of their CH for the formation of clusters. To further extend the lifetime, we have used FL for the next-hop choice for efficient routing. We have conducted the simulation experiments for four scenarios and compared the propound protocol’s performance with recent similar protocols. The experimental results validate the improved performance of E-FUCA with its comparative in respect of better lifetime, protracted stability period, and enhanced average energy.


Author(s):  
C. Jothikumar ◽  
Revathi Venkataraman ◽  
T. Sai Raj ◽  
J. Selvin Paul Peter ◽  
T.Y.J. Nagamalleswari

Wireless sensor network is a wide network that works as a cutting edge model in industrial applications. The sensor application is mostly used for high security systems that provide safety support to the environment. The sensor system senses the physical phenomenon, processes the input signal and communicates with the base station through its neighbors. Energy is the most important criterion to support a live network for long hours. In the proposed system, the EUCOR (Efficient Unequal Clustering and Optimized Routing) protocol uses the objective function to identify the efficient cluster head with variable cluster size. The computation of the objective function deals with the ant colony approach for minimum energy consumption and the varying size of the cluster in each cycle is calculated based on the competition radius. The system prolongs the lifespan of the nodes by minimizing the utilization of energy in the transmission of packets in the networks when compared with the existing system.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 1322 ◽  
Author(s):  
Vrince Vimal ◽  
Madhav J Nigam

Clustering of the sensors in wireless sensor network is done to achieve energy efficiency. The nodes, which are unable to join any cluster, are referred to as isolated nodes and tend to transfer information straight to the base station. It is palpable that isolated nodes and cluster heads communicate with the base station and tend to exhaust their energy leaving behind coverage holes. In this paper, we propose the innovative clustering scheme using mobile sink approach to extend networks lifetime. The proposed (ORP-MS) algorithm is implemented in MATLAB 2017a and the results revealed that the proposed algorithm outdid the existing algorithms in terms networks lifetime and energy efficiency simultaneously achieved high throughput.  


Sign in / Sign up

Export Citation Format

Share Document