EUCOR: An Efficient Unequal Clustering and Optimal Routing in wireless sensor networks for energy conservation

Author(s):  
C. Jothikumar ◽  
Revathi Venkataraman ◽  
T. Sai Raj ◽  
J. Selvin Paul Peter ◽  
T.Y.J. Nagamalleswari

Wireless sensor network is a wide network that works as a cutting edge model in industrial applications. The sensor application is mostly used for high security systems that provide safety support to the environment. The sensor system senses the physical phenomenon, processes the input signal and communicates with the base station through its neighbors. Energy is the most important criterion to support a live network for long hours. In the proposed system, the EUCOR (Efficient Unequal Clustering and Optimized Routing) protocol uses the objective function to identify the efficient cluster head with variable cluster size. The computation of the objective function deals with the ant colony approach for minimum energy consumption and the varying size of the cluster in each cycle is calculated based on the competition radius. The system prolongs the lifespan of the nodes by minimizing the utilization of energy in the transmission of packets in the networks when compared with the existing system.

Author(s):  
Nitin Mittal

Wireless Sensor Network (WSN) is an emerging technology with potential applications in the field of habitat monitoring and industrial applications. Sensors monitor changes in an environment's physical attribute such as temperature, and observe the data collected and forward it to the base station (BS). Mostly these sensors are unattended, and their limited battery life makes energy a valuable resource that has to be used wisely. For the collection of information, the sensor network must be maintained for a longer duration of time in an energy-efficient manner.Therefore, designing protocols that prolong the life of the network and which are energy-efficient is incessantly fascinating. This paper proposed a protocol referred to as the zone-based energy-efficient hierarchical clustering (ZEEHC) protocol that divides the network into small zones and increases network lifetime. In order to achieve minimum energy consumption, multi-hop contact is implemented between ZHs - CHs -BS. The results further reveal that the proposed protocol significantly outperforms existing algorithms in terms of energy optimization and system lifetime.


Author(s):  
Pawan Singh Mehra

AbstractWith huge cheap micro-sensing devices deployed, wireless sensor network (WSN) gathers information from the region and delivers it to the base station (BS) for further decision. The hotspot problem occurs when cluster head (CH) nearer to BS may die prematurely due to uneven energy depletion resulting in partitioning the network. To overcome the issue of hotspot or energy hole, unequal clustering is used where variable size clusters are formed. Motivated from the aforesaid discussion, we propose an enhanced fuzzy unequal clustering and routing protocol (E-FUCA) where vital parameters are considered during CH candidate selection, and intelligent decision using fuzzy logic (FL) is taken by non-CH nodes during the selection of their CH for the formation of clusters. To further extend the lifetime, we have used FL for the next-hop choice for efficient routing. We have conducted the simulation experiments for four scenarios and compared the propound protocol’s performance with recent similar protocols. The experimental results validate the improved performance of E-FUCA with its comparative in respect of better lifetime, protracted stability period, and enhanced average energy.


Author(s):  
Devika G. ◽  
Ramesh D. ◽  
Asha Gowda Karegowda

Many original ideologies are being applied as solutions to the problems of wireless sensor networks with the rigorous experimentation and advancement in technology and research. This chapter reviews various energy-efficient routing algorithms, classifying them based on methodology applied. The classification is based on design approach used to solve the basic problem arising in construction of transmission path between source and base station (BS) with minimum energy consumption. The pros and cons of routing algorithms for WSN are analyzed. The parameters to be considered in evaluation of all routing protocols are summarized.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chi Zhang

This paper takes e-commerce as the research object, based on the combination of wireless sensor network research results, using relevant theoretical analysis tools to identify several major problems in the marketing of enterprises. Then, the internal environment conditions of developing e-commerce are comprehensively analyzed through human resources, financial resources, marketing ability, and platform building ability, and the advantages and disadvantages of the enterprise itself are presented in a three-dimensional manner to help the enterprise understand its situation. Firstly, the overall hardware structure design of this paper is analyzed, and the network marketing node hardware design is proposed as the core of the system hardware design, and the marketing node hardware design circuit diagram is given through the selection of marketing node sensors, the selection of wireless communication modules, and the selection of marketing node microprocessors. Based on the specific application of the wireless sensor network in the e-commerce marketing system, the number of cluster selection is reduced by calculating and setting the remaining energy threshold of the cluster head for the whole network. The optimal cluster head is searched for based on the density of marketing nodes in different regions and the minimum energy consumption of the cluster after the division of the region within the cluster, and the original cluster head is replaced; the density of marketing nodes in different e-commerce is different, and the optimal number of cluster heads is searched for based on the minimum energy consumption of the network. In summary, three strategies are implemented to improve the design of wireless sensor network routing, and the effectiveness of the algorithm is verified through experimental simulation. Through the analysis of e-commerce operation, the intracluster congestion control is achieved by a dual-cluster head strategy with intracluster push selection of subcluster heads; the network nonuniform hierarchy and resource scheduling strategy achieve intercluster congestion mitigation and decongestion. A minimum energy consumption multihop path tree is also proposed here, which can achieve the lowest energy consumption of marketing nodes and networks and improve the link quality relative to other transmission paths. After simulation experiments, the effectiveness and reliability of the congestion algorithm are verified. A guarantee scheme is provided for the development of e-commerce marketing strategies to help breakthroughs and developments in marketing management, and an attempt is also made to provide a template for other enterprises to follow.


Wireless sensor networks (WSNs) consist of self-governing sensors that sense as well as monitor the area in which these nodes are deployed and distribute this information in a distributed manner. Presently, the WSN with long life and minimum energy consumption are in demand. To overcome this problem, Low Energy Adaptive Clustering Hierarchy (LEACH) is presented with the addition of Cuckoo Search (CS) and Support Vector Machine (SVM) concept. The problem of LEACH protocol like which node is considered as Cluster Head (CH) is overcome by CS. On the basis of healthy function, the nodes property such as energy consumed by each node is categorized. Those nodes that have higher energy compared to the defined function are put in one category and remaining in another category. These two categories of nodes are provided as an input to SVM and train the system. Therefore, the best node having the highest energy is considered as CH and hence enhanced the lifetime by saving the energy upto 21.86 %.


Author(s):  
Piyush Rawat ◽  
Siddhartha Chauhan

Background and Objective: The functionalities of wireless sensor networks (WSN) are growing in various areas, so to handle the energy consumption of network in an efficient manner is a challenging task. The sensor nodes in the WSN are equipped with limited battery power, so there is a need to utilize the sensor power in an efficient way. The clustering of nodes in the network is one of the ways to handle the limited energy of nodes to enhance the lifetime of the network for its longer working without failure. Methods: The proposed approach is based on forming a cluster of various sensor nodes and then selecting a sensor as cluster head (CH). The heterogeneous sensor nodes are used in the proposed approach in which sensors are provided with different energy levels. The selection of an efficient node as CH can help in enhancing the network lifetime. The threshold function and random function are used for selecting the cluster head among various sensors for selecting the efficient node as CH. Various performance parameters such as network lifespan, packets transferred to the base station (BS) and energy consumption are used to perform the comparison between the proposed technique and previous approaches. Results and Discussion: To validate the working of the proposed technique the simulation is performed in MATLAB simulator. The proposed approach has enhanced the lifetime of the network as compared to the existing approaches. The proposed algorithm is compared with various existing techniques to measure its performance and effectiveness. The sensor nodes are randomly deployed in a 100m*100m area. Conclusion: The simulation results showed that the proposed technique has enhanced the lifespan of the network by utilizing the node’s energy in an efficient manner and reduced the consumption of energy for better network performance.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1313 ◽  
Author(s):  
Muhammad Awais ◽  
Nadeem Javaid ◽  
Amjad Rehman ◽  
Umar Qasim ◽  
Musaed Alhussein ◽  
...  

Nowadays, the Internet of Things enabled Underwater Wireless Sensor Network (IoT-UWSN) is suffering from serious performance restrictions, i.e., high End to End (E2E) delay, low energy efficiency, low data reliability, etc. The necessity of efficient, reliable, collision and interference-free communication has become a challenging task for the researchers. However, the minimum Energy Consumption (EC) and low E2E delay increase the performance of the IoT-UWSN. Therefore, in the current work, two proactive routing protocols are presented, namely: Bellman–Ford Shortest Path-based Routing (BF-SPR-Three) and Energy-efficient Path-based Void hole and Interference-free Routing (EP-VIR-Three). Then we formalized the aforementioned problems to accomplish the reliable data transmission in Underwater Wireless Sensor Network (UWSN). The main objectives of this paper include minimum EC, interference-free transmission, void hole avoidance and high Packet Delivery Ratio (PDR). Furthermore, the algorithms for the proposed routing protocols are presented. Feasible regions using linear programming are also computed for optimal EC and to enhance the network lifespan. Comparative analysis is also performed with state-of-the-art proactive routing protocols. In the end, extensive simulations have been performed to authenticate the performance of the proposed routing protocols. Results and discussion disclose that the proposed routing protocols outperformed the counterparts significantly.


Author(s):  
Bachujayendra Kumar ◽  
Rajya Lakshmidevi K ◽  
M Verginraja Sarobin

Wireless sensor networks (WSNs) have been used widely in so many applications. It is the most efficient way to monitor the information. There areso many ways to deploy the sensors. Many problems are not identified and solved. The main challenge of WSN is energy efficiency and information security. WSN power consumption is reduced by genetic algorithm-based clustering algorithm. Information from cluster head to base station may have a lot of chances to get hacked. The most reliable way to manage energy consumption is clustering, and encryption will suit best for information security. In this paper, we explain clustering techniques and a new algorithm to encrypt the data in the network.


Author(s):  
Yakubu Abdul-Wahab Nawusu ◽  
Alhassan Abdul-Barik ◽  
Salifu Abdul-Mumin

Extending the lifetime of a wireless sensor network is vital in ensuring continuous monitoring functions in a target environment. Many techniques have appeared that seek to achieve such prolonged sensing gains. Clustering and improved selection of cluster heads play essential roles in the performance of sensor network functions. Cluster head in a hierarchical arrangement is responsible for transmitting aggregated data from member nodes to a base station for further user-specific data processing and analysis. Minimising the quick dissipation of cluster heads energy requires a careful choice of network factors when selecting a cluster head to prolong the lifetime of a wireless sensor network. In this work, we propose a multi-criteria cluster head selection technique to extend the sensing lifetime of a heterogeneous wireless sensor network. The proposed protocol incorporates residual energy, distance, and node density in selecting a cluster head. Each factor is assigned a weight using the Rank Order Centroid based on its relative importance. Several simulation tests using MATLAB 7.5.0 (R2007b) reveal improved network lifetime and other network performance indicators, including stability and throughput, compared with popular protocols such as LEACH and the SEP. The proposed scheme will be beneficial in applications requiring reliable and stable data sensing and transmission functions.


Wireless Sensor Networks (WSN) consists of a large amount of nodes connected in a self-directed manner. The most important problems in WSN are Energy, Routing, Security, etc., price of the sensor nodes and renovation of these networks is reasonable. The sensor node tools included a radio transceiver with an antenna and an energy source, usually a battery. WSN compute the environmental conditions such as temperature, sound, pollution levels, etc., WSN built the network with the help of nodes. A sensor community consists of many detection stations known as sensor nodes, every of which is small, light-weight and portable. Nodes are linked separately. Each node is linked into the sensors. In recent years WSN has grow to be an essential function in real world. The data’s are sent from end to end multiple nodes and gateways, the data’s are connected to other networks such as wireless Ethernet. MGEAR is the existing mechanism. It works with the routing and energy consumption. The principal problem of this work is choosing cluster head, and the selection is based on base station, so the manner is consumes energy. In this paper, develop the novel based hybrid protocol Low Energy Aware Gateway (LEAG). We used Zigbee techniques to reduce energy consumption and routing. Gateway is used to minimize the energy consumption and data is send to the base station. Nodes are used to transmit the data into the cluster head, it transmit the data into gateway and gateway compress and aggregate the data then sent to the base station. Simulation result shows our proposed mechanism consumes less energy, increased throughput, packet delivery ration and secure routing when compared to existing mechanism (MGEAR).


Sign in / Sign up

Export Citation Format

Share Document