Reference signal control of the TORA system: a TP model transformation based approach

Author(s):  
Z. Petres ◽  
B. Resko ◽  
P. Baranyi
2021 ◽  
Vol 2141 (1) ◽  
pp. 012006
Author(s):  
Hernando González Acevedo

Abstract The paper presents the dynamic model of a Kaplan turbine coupled to a DC generator, which is part of the H112D didactic system. A robust controller is designed using two different techniques: H ∞ mixed sensitivity and Quantitative feedback Theory (QFT). The robustness of the controller was analysed with three indicators: analysis of parameter uncertainties, transient response given a variable reference signal and robustness against disturbances.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Yonglong Liao ◽  
Fucheng Liao

This paper presents a method for designing a backstepping tracking controller for a class of continuous-time linear systems with actuator delay subject to a reference signal. The actuator delay can be modeled by a first-order hyperbolic PDE, and then a PDE-ODE coupled system is obtained. By applying the backstepping transformation to the coupled system, a feedback controller that includes the state of the system, the integral of the input control, and the integral of the tracking error is derived. We show that the closed-loop system is asymptotically stable at the equilibrium point and achieves complete regulation under the stabilizability assumption. The designs in this paper are illustrated with numerical simulations.


Electronics ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 159 ◽  
Author(s):  
Sonali Chetan Rangari ◽  
Hiralal Murlidhar Suryawanshi ◽  
Mohan Renge

The developed torque with minimum oscillations is one of the difficulties faced when designing drive systems. High ripple torque contents result in fluctuations and acoustic noise that impact the life of a drive system. A multiphase machine can offer a better alternative to a conventional three-phase machine in faulty situations by reducing the number of interruptions in industrial operation. This paper proposes a unique fault-tolerant control strategy for a five-phase induction motor. The paper considers a variable-voltage, variable-frequency control five-phase induction motor in one- and two-phase open circuit faults. The four-phase and three-phase operation modes for these faults are utilized with a modified voltage reference signal. The suggested remedial strategy is the method for compensating a faulty open phase of the machine through a modified reference signal. A modified voltage reference signal can be efficiently executed by a carrier-based pulse width modulation (PWM) system. A test bench for the execution of the fault-tolerant control strategy of the motor drive system is presented in detail along with the experimental results.


2022 ◽  
Vol 1 (15) ◽  
pp. 42-47
Author(s):  
Mihail Dunaev ◽  
Sarfaroz Dovudov

This article investigates the regulation of the angular speed of an electric drive (ED) with a pulse-width converter (PWC) and a direct current motor (DC motor) of independent excitation (NV) when controlled in a closed-loop system. A proportional-integral (PI) -regulator was used as a regulator of the angular velocity. To analyze the processes in the closed-loop SHIP-DPT system, the methods of simulation are used. The principle of operation of an electric drive with control from a PWM is described. Developed and modeled EP circuits with PWM in the Matlab environment using blocks from the Simulink / SimPowerSystem library. A model block has been modeled that calculates the static and dynamic power losses of the PWP IGBT. To calculate the static and dynamic losses, the method of approximating the loss graphs was used. The obtained mathematical dependences describe quite accurately the graphs of the power losses of the IGBT transistor. It is shown that when using a PI-controller, the angular speed of the electric drive is set according to a given speed reference signal.


Author(s):  
R. C. Moretz ◽  
G. G. Hausner ◽  
D. F. Parsons

Electron microscopy and diffraction of biological materials in the hydrated state requires the construction of a chamber in which the water vapor pressure can be maintained at saturation for a given specimen temperature, while minimally affecting the normal vacuum of the remainder of the microscope column. Initial studies with chambers closed by thin membrane windows showed that at the film thicknesses required for electron diffraction at 100 KV the window failure rate was too high to give a reliable system. A single stage, differentially pumped specimen hydration chamber was constructed, consisting of two apertures (70-100μ), which eliminated the necessity of thin membrane windows. This system was used to obtain electron diffraction and electron microscopy of water droplets and thin water films. However, a period of dehydration occurred during initial pumping of the microscope column. Although rehydration occurred within five minutes, biological materials were irreversibly damaged. Another limitation of this system was that the specimen grid was clamped between the apertures, thus limiting the yield of view to the aperture opening.


Author(s):  
V. Castano ◽  
W. Krakow

In non-UHV microscope environments atomic surface structure has been observed for flat-on for various orientations of Au thin films and edge-on for columns of atoms in small particles. The problem of oxidation of surfaces has only recently been reported from the point of view of high resolution microscopy revealing surface reconstructions for the Ag2O system. A natural extension of these initial oxidation studies is to explore other materials areas which are technologically more significant such as that of Cu2O, which will now be described.


Author(s):  
Yimei Zhu ◽  
Masaki Suenaga ◽  
R. L. Sabatini ◽  
Youwen Xu

The (110) twin structure of YBa2Cu3O7 superconductor oxide, which is formed to reduce the strain energy of the tetragonal to orthorhombic phase transformation by alternating the a-b crystallographic axis across the boundary, was extensively investigated. Up to now the structure of the twin boundary still remained unclear. In order to gain insight into the nature of the twin boundary in Y-Ba-Cu-O system, a study using electron diffraction techniques including optical and computed diffractograms, as well as high resolution structure imaging techniques with corresponding computer simulation and processing was initiated.Bulk samples of Y-Ba-Cu-O oxide were prepared as described elsewhere. TEM specimens were produced by crushing bulk samples into a fine powder, dispersing the powder in acetone, and suspending the fine particles on a holey carbon grid. The electron microscopy during this study was performed on both a JEOL 2000EX and 2000FX electron microscopes operated at 200 kV.


Sign in / Sign up

Export Citation Format

Share Document