Differential signal transmission in silicon-photonics integrated circuit for high density optical interconnects

Author(s):  
Junichi Fujikata ◽  
Yutaka Urino ◽  
Suguru Akiyama ◽  
Takanori Shimizu ◽  
Nobuaki Hatori ◽  
...  
2014 ◽  
Author(s):  
Yutaka Urino ◽  
Tatsuya Usuki ◽  
Junichi Fujikata ◽  
Masashige Ishizaka ◽  
Koji Yamada ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1646
Author(s):  
Jingya Xie ◽  
Wangcheng Ye ◽  
Linjie Zhou ◽  
Xuguang Guo ◽  
Xiaofei Zang ◽  
...  

In the last couple of decades, terahertz (THz) technologies, which lie in the frequency gap between the infrared and microwaves, have been greatly enhanced and investigated due to possible opportunities in a plethora of THz applications, such as imaging, security, and wireless communications. Photonics has led the way to the generation, modulation, and detection of THz waves such as the photomixing technique. In tandem with these investigations, researchers have been exploring ways to use silicon photonics technologies for THz applications to leverage the cost-effective large-scale fabrication and integration opportunities that it would enable. Although silicon photonics has enabled the implementation of a large number of optical components for practical use, for THz integrated systems, we still face several challenges associated with high-quality hybrid silicon lasers, conversion efficiency, device integration, and fabrication. This paper provides an overview of recent progress in THz technologies based on silicon photonics or hybrid silicon photonics, including THz generation, detection, phase modulation, intensity modulation, and passive components. As silicon-based electronic and photonic circuits are further approaching THz frequencies, one single chip with electronics, photonics, and THz functions seems inevitable, resulting in the ultimate dream of a THz electronic–photonic integrated circuit.


VLSI Design ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Xiao Wang ◽  
Zelin Shi

Being an essential part of infrared readout integrated circuit, correlated double sampling (CDS) circuits play important roles in both depressing reset noise and conditioning integration signals. To adapt applications for focal planes of large format and high density, a new structure of CDS circuit occupying small layout area is proposed, whose power dissipation has been optimized by using MOSFETs in operation of subthreshold region, which leads to 720 nW. Then the noise calculation model is established, based on which the noise analysis has been carried out by the approaches of transfer function and numerical simulations using SIMULINK and Verilog-A. The results are in good agreement, demonstrating the validity of the present noise calculation model. Thermal noise plays a dominant role in the long wave situation while 1/f noise is the majority in the medium wave situation. The total noise of long wave is smaller than medium wave, both of which increase with the integration capacitor and integration time increasing.


Author(s):  
Yutaka Makihara ◽  
Moataz Eissa ◽  
Tomohiro AMEMIYA ◽  
Nobuhiko Nishiyama

Abstract To achieve a reconfigurable photonic integrated circuit with active elements, we proposed a reflectivity tunable mirror constructed using a Mach–Zehnder interferometer (MZI) with a micro heater and loop waveguide on a silicon photonics platform. In this paper, the principle of the operation, design, fabrication, and measurement results of the mirror are presented. In theory, the phase shift dependence of the mirror relies on the coupling coefficient of the directional couplers of the MZI. When the coupling coefficient κ2 was 0.5 and 0.15, the reflection could be turned on and off with a phase shift of π/2 and π, respectively. The reflection power of the fabricated mirror on the silicon on insulator (SOI) substrate was changed by more than 20 dB by a phase shift. In addition, it was demonstrated that the phase shift dependence of the mirror changes with the coupling coefficient of the fabricated devices.


2014 ◽  
Vol 2 (3) ◽  
pp. A1 ◽  
Author(s):  
Yutaka Urino ◽  
Tatsuya Usuki ◽  
Junichi Fujikata ◽  
Masashige Ishizaka ◽  
Koji Yamada ◽  
...  

2017 ◽  
Vol 29 (3) ◽  
pp. 334-337 ◽  
Author(s):  
Yasunobu Matsuoka ◽  
Naohiro Kohmu ◽  
Yong Lee ◽  
Hideo Arimoto ◽  
Toshiaki Takai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document