scholarly journals The immune system as a reactive system: modeling T cell activation with statecharts

Author(s):  
N. Kam ◽  
I.R. Cohen ◽  
D. Harel
2008 ◽  
Vol 26 (20) ◽  
pp. 3445-3455 ◽  
Author(s):  
John M. Kirkwood ◽  
Ahmad A. Tarhini ◽  
Monica C. Panelli ◽  
Stergios J. Moschos ◽  
Hassane M. Zarour ◽  
...  

PurposeImmunotherapy has a long history with striking but limited success in patients with melanoma. To date, interleukin-2 and interferon-alfa2b are the only approved immunotherapeutic agents for melanoma in the United States.DesignTumor evasion of host immune responses, and strategies for overcoming tumor-induced immunosuppression are reviewed. Several novel immunotherapies currently in worldwide phase III clinical testing for melanoma are discussed.ResultsThe limitations of immunotherapy for melanoma stem from tumor-induced mechanisms of immune evasion that render the host tolerant of tumor antigens. For example, melanoma inhibits the maturation of antigen-presenting cells, preventing full T-cell activation and downregulating the effector antitumor immune response. New immunotherapies targeting critical regulatory elements of the immune system may overcome tolerance and promote a more effective antitumor immune response. These include monoclonal antibodies that block the cytotoxic T lymphocyte-associated antigen 4 (CTLA4) and toll-like receptor 9 (TLR9) agonists. Blockade of CTLA4 prevents inhibitory signals that downregulate T-cell activation. TLR9 agonists stimulate dendritic cell maturation and ultimately induce a more effective immune response. These approaches have been shown to stimulate acute immune activation with concomitant appearance of transient adverse events mediated by the immune system. The pattern and duration of immune responses associated with these new modalities differ from those associated with cytokines and cytotoxic agents. In addition, vaccines are being developed that may ultimately target melanoma either alone or in combination with these immunomodulatory therapies.ConclusionThe successes of cytokine and interferon therapy of melanoma, coupled with an array of new approaches, are generating new enthusiasm for the immunotherapy of melanoma.


2021 ◽  
Author(s):  
Ming Li ◽  
Xiaojiang Xu ◽  
Qing Xu ◽  
Xin Xu ◽  
M Andrea Azcarate-Peril ◽  
...  

Dietary methionine restriction has been reported to repress cancer growth and improve therapeutic responses in several pre-clinical settings. However, how this dietary intervention impacts cancer progression in the context of the intact immune system is unknown. Here we report that methionine restriction exacerbates cancer growth and influences the outcomes of anti-tumor immunotherapy through gut microbiota and immune suppression in immunocompetent settings. Methionine restriction reduces T cell activation, increases tumor growth, and impairs response to anti-tumor immunotherapy. Mechanistically, methionine restriction alters composition of gut microbiota and reduces microbial production of hydrogen sulfide. Fecal transplantation from methionine-restricted tumor-free animals is sufficient to repress T cell activation and enhance tumor growth in tumor-bearing recipient mice. Conversely, dietary supplementation of a hydrogen sulfide donor or methionine stimulates anti-tumor immunity and suppresses tumor progression. Our findings reveal a vital role of gut microbiota in mediating methionine restriction-induced suppression of anti-tumor immunity and suggest that any possible anti-cancer benefits of methionine restriction require careful considerations of both the microbiota and the immune system.


2021 ◽  
pp. 553-591
Author(s):  
Elena Locci ◽  
Silvia Raymond

A groundbreaking study led by engineering and medical researchers at the California South University (CSU) shows how immune cells engineered in new cancer therapies can overcome physical barriers so that the patient's own immune system can fight tumors. This research could improve the future of millions of cancer patients worldwide. Immunotherapy, instead of using chemicals or radiation, is a type of cancer treatment that helps the patient's immune system fight cancer. T cells are a type of white blood cell that is essential for the body's immune system. Cytotoxic T cells are like soldiers searching for and destroying target invading cells. Although there has been success in using immunotherapy for some types of cancer in the blood or blood-producing organs, T cell work is much more difficult in solid tumors. Keywords: Cancer; Cells; Tissues, Tumors; Prevention, Prognosis; Diagnosis; Imaging; Screening; Treatment; Management


2021 ◽  
Vol MA2021-01 (52) ◽  
pp. 2031-2031
Author(s):  
Mohsen Nami ◽  
Patrick Han ◽  
Douglas Hanlon ◽  
Shari Yosinski ◽  
Richard Edelson ◽  
...  

2009 ◽  
Vol 1209 ◽  
Author(s):  
Keyue Shen ◽  
Michael C Milone ◽  
Michael L. Dustin ◽  
Lance Cameron Kam

AbstractT lymphocytes are a key regulatory component of the adaptive immune system. Understanding how the micro- and nano-scale details of the extracellular environment influence T cell activation may have wide impact on the use of T cells for therapeutic purposes. In this article, we examine how the micro- and nano-scale presentation of ligands to cell surface receptors, including microscale organization and nanoscale mobility, influences the activation of T cells. We extend these studies to include the role of cell-generated forces, and the rigidity of the microenvironment, on T cell activation. These approaches enable delivery of defined signals to T cells, a step toward understanding the cell-cell communication in the immune system, and developing micro/nano- and material- engineered systems for tailoring immune responses for adoptive T cell therapies.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2795-2795
Author(s):  
Rina M Mbofung ◽  
Alan M Williams ◽  
Ken Hayama ◽  
Yijia Pan ◽  
Brian Groff ◽  
...  

Abstract Allogeneic off-the-shelf cell therapies offer distinct advantages over conventional autologous cell therapies in terms of scaled manufacturing, on-demand availability and optimization of cellular starting material. A unique consideration in the use of allogeneic cell therapies is the potential for immune cell-mediated recognition of the allogeneic cell product by the patient's immune system. CAR T-cell therapies are commonly combined with conditioning chemotherapies that suppress a patient's immune system, creating a suitable window of activity to elicit clinical response. However, protracted lympho-conditioning also affects immune reconstitution and can negatively impact the rate of infection. Alternative approaches to prevent allorejection may therefore help to enhance the efficacy of the therapy while preserving the immune system of the patient. Elimination of cell-surface human leukocyte antigen (HLA) molecule expression by genetic knockout (KO) has long been known to abrogate T-cell reactivity. However, loss of class I HLA elicits NK cell-mediated recognition and clearance, and therefore must be combined with other immune-modulating strategies to limit host NK cell reactivity. Allogeneic models combining class I HLA deletion with NK cell inhibitory molecules, such as HLA-E and CD47, have been shown to abrogate NK cell reactivity in mouse models. However, HLA-E is the canonical activator of NKG2C, a dominant activating receptor found on human NK cells. Likewise, the expression of signal regulatory protein alpha (SIRPα), the major interactor for CD47, is mostly restricted to macrophages and dendritic cells and not human NK cells, and the observed effects of this immune-modulating strategy in the mouse system may only offer partial or incomplete immune evasion in the human system. In this study, we provide details of a bona fide off-the-shelf strategy where iPSC-derived NK (iNK) cell therapy is multiplexed engineered with a novel combination of immune-evasion modalities; beta 2 microgobulin (B2M) KO to prevent CD8 T-cell mediated rejection; class II transactivator (CIITA) KO to prevent CD4 T-cell mediated rejection; and CD38 KO to enable combination with anti-CD38 mAbs, which can be administered to deplete host alloreactive lymphocytes, including both NK and T cells. In vitro mixed lymphocyte reaction (MLR) data demonstrated that upon co-culture with allogeneic PBMCs, B2M KO iNK cells stimulated less T-cell activation than their B2M sufficient counterparts as evidenced by reduced CD38, 41BB, and CD25 levels on T cells. Additionally, B2M KO iNK cells impaired T-cell expansion over the duration of co-culture, resulting in a 50% decrease in expansion at the peak of the control response. However, B2M KO iNK cells were depleted over time, suggesting activation of an NK cell "missing self" response by the peripheral blood NK (pbNK) cells. In contrast, when the assay was performed in the presence of anti-CD38 mAb, depletion of B2M KO iNK cells was blocked, and instead B2M KO iNK cell numbers increased by 3.5-fold, comparable to the iNK cell numbers found in the control arm (cultured without allogeneic PBMCs). Interestingly, pbNK cell numbers decreased, while T-cell activation and expansion remained lower than in B2M-sufficient MLR cultures. Furthermore, when B2M KO iNK cells were cocultured with tumor cells and anti-CD38 mAb in vitro, ADCC was comparable to the B2M sufficient cells, indicating uncompromised effector function. Finally, in vivo studies suggested that co-administration of anti-CD38 mAbs can significantly enhance the persistence of B2M KO iNK cells in the presence of allogeneic pbNK cells as seen in the spleen and bone marrow (Figure 1). Together these data demonstrate that the combination of triple-gene knockout of CD38, B2M and CIITA with a CD38-targeting mAb is an effective strategy to avoid host immune rejection, and highlights the potential advantages of multiplexed engineered iPSCs to facilitate large-scale manufacture of complex engineered, off-the-shelf cellular therapies. Figure 1 Figure 1. Disclosures Williams: Fate Therapeutics: Current Employment. Malmberg: Merck: Research Funding; Vycellix: Consultancy; Fate Therapeutics: Consultancy, Research Funding. Lee: Fate Therapeutics, Inc.: Current Employment. Bjordahl: Fate Therapeutics: Current Employment. Valamehr: Fate Therapeutics, Inc.: Current Employment.


2019 ◽  
Vol 93 (13) ◽  
Author(s):  
Aaron Christensen-Quick ◽  
Marta Massanella ◽  
Andrew Frick ◽  
Stephen A. Rawlings ◽  
Celsa Spina ◽  
...  

ABSTRACTMost people living with HIV (PLWH) are coinfected with cytomegalovirus (CMV). Subclinical CMV replication is associated with immune dysfunction and with increased HIV DNA in antiretroviral therapy (ART)-naive and -suppressed PLWH. To identify immunological mechanisms by which CMV could favor HIV persistence, we analyzed 181 peripheral blood mononuclear cell (PBMC) samples from 64 PLWH starting ART during early HIV infection with subsequent virologic suppression up to 58 months. In each sample, we measured levels of CMV and Epstein-Barr virus (EBV) DNA by droplet digital PCR (ddPCR). We also measured expression of immunological markers for activation (HLA-DR+CD38+), cycling (Ki-67+), degranulation (CD107a+), and the immune checkpoint protein PD-1 on CD4+and CD8+T cell memory subsets. Significant differences in percentages of lymphocyte markers by CMV/EBV shedding were identified using generalized linear mixed-effects models. Overall, CMV DNA was detected at 60/181 time points. At the time of ART initiation, the presence of detectable CMV DNA was associated with increased CD4+T cell activation and CD107a expression and with increased CD8+T cellular cycling and reduced CD107a expression on CD8+T cells. While some effects disappeared during ART, greater CD4+T cell activation and reduced CD107a expression on CD8+T cells persisted when CMV was present (P < 0.01). In contrast, EBV was not associated with any immunological differences. Among the covariates, peak HIV RNA and CD4/CD8 ratio had the most significant effect on the immune system. In conclusion, our study identified immune differences in PLWH with detectable CMV starting early ART, which may represent an additional hurdle for HIV cure efforts.IMPORTANCEChronic viral infections such as with HIV and CMV last a lifetime and can continually antagonize the immune system. Both viruses are associated with higher expression of inflammation markers, and recent evidence suggests that CMV may complicate efforts to deplete HIV reservoirs. Our group and others have shown that CMV shedding is associated with a larger HIV reservoir. Subclinical CMV replication could favor HIV persistence via bystander effects on our immune system. In this study, we collected longitudinal PBMC samples from people starting ART and measured immune changes associated with detectable CMV. We found that when CMV was detectable, CD4+T cell activation was higher and CD8+T cell degranulation was lower. Both results may contribute to the slower decay of the size of the reservoir during CMV replication, since activated CD4+T cells are more vulnerable to HIV infection, while the loss of CD8+T cell degranulation may impede the proper killing of infected cells.


Biomarkers ◽  
2021 ◽  
pp. 1-24
Author(s):  
Amit Kumar Kureel ◽  
Sheetal Saini ◽  
Bharat Singh ◽  
Kulwant Singh ◽  
Ambak Rai

2019 ◽  
Vol 7 (1) ◽  
pp. 45-61
Author(s):  
Pedro J. Llanos ◽  
Kristina Andrijauskaite

AbstractResearch indicates that exposure to microgravity leads to immune system dysregulation. However, there is a lack of clear evidence on the specific reasons and precise mechanisms accounting for these immune system changes. Past studies investigating space travel-induced alterations in immunological parameters report many conflicting results, explained by the role of certain confounders, such as cosmic radiation, individual body environment, or differences in experimental design. To minimize the variability in results and to eliminate some technical challenges, we advocate conducting thorough feasibility studies prior to actual suborbital or orbital space experiments. We show how exposure to suborbital flight stressors and the use of a two-dimensional slow rotating device affect T-cells and cancer cells survivability. To enhance T-cell activation and viability, we primed them alone or in combination with IL-2 and IL-12 cytokines. Viability of T-cells was assessed before, during the experiment, and at the end of the experiment for which T-cells were counted every day for the last 4 days to allow the cells to form clear structures and do not disturb their evolution into various geometries. The slow rotating device could be considered a good system to perform T-cell activation studies and develop cell aggregates for various types of cells that react differently to thermal stressors.


Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1488
Author(s):  
Stefania Farcomeni ◽  
Sonia Moretti ◽  
Caterina Fimiani ◽  
Lucia Fontanelli Sulekova ◽  
Fenicia Vescio ◽  
...  

Background: Direct-acting antivirals (DAAs) treatment, although highly efficacious for the treatment of hepatitis C virus (HCV) infection, may not completely reconstitute the HCV-mediated dysregulated immune system, especially in patients co-infected with human immunodeficiency virus (HIV) and HCV. Objectives: We aimed to evaluate the impact of HCV eradication following DAA therapy on the immune system and liver disease improvement through comparative monitoring of 10 HCV mono-infected and 10 HCV/HIV co-infected patients under combined antiretroviral therapy (cART). Early and late longitudinal phenotypic changes in peripheral blood mononuclear cell (PBMC) subsets, T-cell activation, differentiation and exhaustion, as well as inflammatory biomarkers, indoleamine 2-3 dioxygenase (IDO) activity, and liver stiffness, APRI and FIB-4 scores were assessed. Materials and Methods: Samples were obtained at baseline (T0), week 1 (T1), week 2 (T2), week 12 (T3, end of treatment, EOT), and month 9 (T4, end of follow-up, 36 weeks post EOT). Results: All patients achieved a sustained virological response (SVR 12) after DAA treatment. Overall, changes of the T-cell immune phenotypes were greater in HCV/HIV co-infected than in HCV mono-infected, due to an increase in CD4+ and CD8+ T-cell percentages and of CD8+ T-cell activation and memory markers, in particular at the end of follow-up. On the other end, HCV mono-infected showed changes in the activation profile and in the memory CD4+ T-cell compartment. In HCV/HIV co-infected, a decrease in the IDO activity by DAA treatment was observed; conversely, in HCV mono-infected, it resulted unmodified. Regarding inflammatory mediators, viral suppression was associated with a reduction in IP-10 levels, while interferon regulatory factor (IRF)-7, interferon (IFN)-β, and interferon (IFN)-γ levels were downregulated during therapy and increased post therapy. A decrease in liver stiffness, APRI, and FIB-4 scores was also observed. Conclusions: Our study suggests that, although patients achieved HCV eradication, the immune activation state in both HCV mono-infected and HCV/HIV co-infected patients remains elevated for a long time after the end of DAA therapy, despite an improvement of liver-specific outcomes, meanwhile highlighting the distinct immunophenotypic and inflammatory biomarker profile between the groups of patients.


Sign in / Sign up

Export Citation Format

Share Document