A Conclusive Model-Fit Current-Voltage Characteristics Curves of FinFET Transistors with Fin Width 120nm

Author(s):  
Yang-Ming Peng ◽  
Min-Hsuan Yang ◽  
Hsin-Chia Yang ◽  
Yi-Syuan Lin ◽  
Jia-Jun Lin ◽  
...  
2013 ◽  
Vol 711 ◽  
pp. 8-13
Author(s):  
A.I. Romanenko ◽  
K.M. Limaev ◽  
D.N. Dybtsev ◽  
V.P. Fedin ◽  
S.B. Aliev ◽  
...  

We investigated current-voltage (I-V) characteristics of bulk polyaniline and aniline polymerized inside nanopores of chromium terephthalate dielectric matrix MIL-101. The temperature dependence of electrical conductivity σ (T) of these materials are described by the fluctuation-induced tunneling model (FIT), which means that the main contribution to a net conductivity is caused by contacts between particles of the polyaniline. The comparison of I-V for these two types of materials shown that I-V characteristics of bulk polyaniline are described by the quasi-1D VRH model while for aniline polymerized inside nanopores of chromium terephthalate dielectric matrix MIL-101 by extended FIT model.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1401
Author(s):  
Te Jui Yen ◽  
Albert Chin ◽  
Vladimir Gritsenko

Large device variation is a fundamental challenge for resistive random access memory (RRAM) array circuit. Improved device-to-device distributions of set and reset voltages in a SiNx RRAM device is realized via arsenic ion (As+) implantation. Besides, the As+-implanted SiNx RRAM device exhibits much tighter cycle-to-cycle distribution than the nonimplanted device. The As+-implanted SiNx device further exhibits excellent performance, which shows high stability and a large 1.73 × 103 resistance window at 85 °C retention for 104 s, and a large 103 resistance window after 105 cycles of the pulsed endurance test. The current–voltage characteristics of high- and low-resistance states were both analyzed as space-charge-limited conduction mechanism. From the simulated defect distribution in the SiNx layer, a microscopic model was established, and the formation and rupture of defect-conductive paths were proposed for the resistance switching behavior. Therefore, the reason for such high device performance can be attributed to the sufficient defects created by As+ implantation that leads to low forming and operation power.


Sign in / Sign up

Export Citation Format

Share Document