Current-voltage characteristics of Li-doped MgO oxidized at elevated temperatures

1980 ◽  
Vol 41 (C6) ◽  
pp. C6-398-C6-400 ◽  
Author(s):  
Y. Chen ◽  
J. L. Boldu ◽  
V. M. Orera
2015 ◽  
Vol 9 (1) ◽  
pp. 61-66 ◽  
Author(s):  
Vandana Kumari ◽  
Anusaiya Kaswan ◽  
Dinesh Patidar ◽  
Narendra Saxena ◽  
Kananbala Sharma

Current-voltage characteristics and DC electrical conductivity were studied for Ge30-xSe70Snx (x = 8, 11, 14, 17 and 20) glassy thin pellets of diameter 12mm and thickness 1mm prepared under a constant load of 5 tons using a well-known melt quenching technique in bulk as a function of composition. The I-V characteristics were recorded at room temperature as well as elevated temperatures up to 300?C. The experimental data suggests that glass containing 20 at.% of Sn has the minimum resistance allowing maximum current through the sample as compared to other counterparts of the series. Therefore, DC conductivity is found to increase with increasing Sn concentration. Composition dependence of DC conductivity is discussed in terms of the bonding between Se and Sn. Plots between ln I and V1/2 provide linear relationship for both low and high voltage range. These results have been explained through the Pool-Frenkel mechanism. The I-V characteristics show ohmic behaviour in the low voltage range and this behaviour turns to non-ohmic from ohmic in the higher voltage range due to voltage induced temperature effects.


2009 ◽  
Vol 1165 ◽  
Author(s):  
Aleksander Urbaniak ◽  
Małgorzata Igalson

AbstractWe investigate the origin of fill factor changes induced by reverse bias treatment. Evolution of current-voltage characteristics have been measured during application of reverse voltage bias. Two different cell behaviors have been identified. At elevated temperatures one kind of the devices strongly deteriorates and exhibit so called double diode behavior. On the other hand, in the same conditions another cells keep their fill factor almost constant. We correlate the fill factor changes with the kinetics of capacitance and show that although increased number of shallow acceptors itself cannot induce this severe FF deterioration, it may strongly influence position of the Fermi level at the heterointerface that in a presence of an electron barrier is crucial for the device behavior.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1401
Author(s):  
Te Jui Yen ◽  
Albert Chin ◽  
Vladimir Gritsenko

Large device variation is a fundamental challenge for resistive random access memory (RRAM) array circuit. Improved device-to-device distributions of set and reset voltages in a SiNx RRAM device is realized via arsenic ion (As+) implantation. Besides, the As+-implanted SiNx RRAM device exhibits much tighter cycle-to-cycle distribution than the nonimplanted device. The As+-implanted SiNx device further exhibits excellent performance, which shows high stability and a large 1.73 × 103 resistance window at 85 °C retention for 104 s, and a large 103 resistance window after 105 cycles of the pulsed endurance test. The current–voltage characteristics of high- and low-resistance states were both analyzed as space-charge-limited conduction mechanism. From the simulated defect distribution in the SiNx layer, a microscopic model was established, and the formation and rupture of defect-conductive paths were proposed for the resistance switching behavior. Therefore, the reason for such high device performance can be attributed to the sufficient defects created by As+ implantation that leads to low forming and operation power.


2020 ◽  
Vol 1686 ◽  
pp. 012019
Author(s):  
Andrey V. Kaziev ◽  
Kseniia A. Leonova ◽  
Maksim M. Kharkov ◽  
Alexander V. Tumarkin ◽  
Dobrynya V. Kolodko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document